Какие функции выполняет клеточная мембрана 8 класс


БИОЛОГИЯ 8 КЛАСС Напишите строение и функции: 1)клеточной мембраны 2)эндоплазматической - Школьные Знания.com

наружного скелета:а) речной рак;б) дождевой червь;в) паук- крестовик;г) майский жук.3.Только для живых организмов характерно…а) уменьшение веса;б) изменение окраски;в) обмен веществ;г) взаимодействие со средой4. У покрытосеменных растений, в отличие от голосеменных,а) тело составляют органы и тканиб) оплодотворение происходит при наличии водыв) в семени формируется зародышг) осуществляется двойное оплодотворение5. Какую функцию выполняет пигмент меланин, образующийся в кожечеловека?а) защищает организм от ультрафиолетового излученияб) служит резервным питательным веществом для клетокв) способствует сохранению тепла организмомг) укрепляет клетки кожи6. Первыми обитателями суши стали – позвоночные животные…а) млекопитающиеб) пресмыкающиесяв) земноводныег) рыбы7. Бактерии выделяют в особое царство, потому что…а) у них нет оформленного ядра, митохондрий;б) клетка бактерий не имеет цитоплазмы и рибосом;в) среди них есть только одноклеточные формы;г) среди них есть паразиты и сапрофиты.8. Если кровь из раны вытекает пульсирующей струёй и имеет ярко-алый цвет,то кровотечение у пострадавшегоа) венозное, и достаточно наложить тугую повязкуб) артериальное, и достаточно наложить тугую повязкув) артериальное, и необходимо наложить жгутг) венозное, и необходимо наложить жгут9. Артериальная кровь находится в следующих отделах сердца млекопитающих животных и человека:а) в левых предсердии и желудочке;б) в правых предсердии и желудочке;в) в левом и правом предсердии;г) в левом и правом желудочке.10. По чувствительному нейрону возбуждение направляется…а) в центральную нервную систему;б) к исполнительному органу;в) к рецепторам;г) к мышцам11. Сохранение постоянства экосистем обеспечивается…а) смертностью особей;б) обилием хищников;в) круговоротом веществ;г) изменениями климата.12. Определите условие проведения опыта для обнаружения образования крахмала при фотосинтезе, которое необходимо соблюдать:а) два растения поставить на свет;б) два растения поставить в тёмное помещение;в) одно растение поставить на свет, а другое в тёмное помещение;г) использовать для опыта одно растение.Часть 2Какие особенности строения отличают земноводных от рыб?Выберите три верных ответа из шести.органы дыхания представлены лёгкими и кожейимеется внутреннее и среднее ухоголовной мозг состоит из пяти отделовимеется плавательный пузырьсердце трёхкамерноеодин круг кровообращенияУстановите соответствие между признаком животного и типом, для которого этот признак характерен. К каждому элементу первого столбца подберите соответствующий элемент из второго и запишите выбранные цифры в таблицу под соответствующими буквами.А) кровеносная система отсутствуетБ) снабжены приспособлениями к паразитизму – крючки, присоски и т.дВ) в цикле развития отсутствуют промежуточные хозяеваГ) кровеносная система имеетсяД) играют роль в процессе почвообразованияЕ) у многих видов пищеварительная система отсутствуетКольчатые червиПлоские червиОтвет:3.Установите последовательность систематических категорий, начиная с наименьшей. В ответе запишите соответствующую последовательность буквА) ГубоцветныеБ) ЯсноткаВ) Яснотка белаяГ) ПокрытосеменныеД) Двудольные4.Составьте пищевую цепь, используя все названные ниже объекты: перегной, паук – крестовик, ястреб, большая синица, комнатная муха. Определите консумента третьего порядка в составленной цепи​

znanija.com

Какую функцию выполняет клеточная мембрана — её свойства и функции

Клеточная мембрана — молекулярная структура, которая состоит из липидов и белков. Главные её свойства и функции:

  • отделение содержимого любой клетки от внешней среды, гарантируя её целостность;
  • управление и налаживание обменом между средой и клеткой;
  • внутриклеточные мембраны разбивают клетку на специальные отсеки: органеллы или компартменты.

Слово «мембрана» на латыни означает «пленка». Если говорить о клеточной мембране, то это совокупность двух пленок, которые обладают различными свойствами.

Биологическая мембрана включает в себя три вида белков:

  1. Периферические – расположены на поверхности пленки;
  2. Интегральные – целиком пронизывают мембрану;
  3. Полуинтегральные – одним концом проникают внутрь билипидного слоя.
Какие функции выполняет клеточная мембрана

1. Клеточная стенка — прочная оболочка клетки, которая находится снаружи от цитоплазматической мембраны. Она выполняет защитные, транспортные и структурные функции. Присутствует у многих растений, бактерий, грибов и архей.

2. Обеспечивает барьерную функцию, то есть избирательный, регулируемый, активный и пассивный обмен веществ с внешней средой.

3. Способна передавать и сохранять информации, а также принимает участие в процессе размножения.

4. Выполняет транспортную функцию, которая может через мембрану транспортировать вещества в клетку и из клетки.

5. Клеточная мембрана имеет одностороннюю проводимость. Благодаря этому, молекулы воды могут без задержек проходить через клеточную мембрану, а молекулы прочих веществ проникают выборочно.

6. С помощью клеточной мембраны происходит получение воды, кислорода и питательных веществ, а через неё удаляются продукты клеточного обмена.

7. Выполняет клеточный обмен через мембраны, и может исполнять их с помощью 3 главных типов реакций: пиноцитоз, фагоцитоз, экзоцитоз.

8. Мембрана обеспечивает специфику межклеточных контактов.

9. В мембране присутствуют многочисленные рецепторы, которые способны воспринимать химические сигналы — медиаторы, гормоны и множество других биологических активных веществ. Так она в силах изменить метаболическую активность клетки.

10. Основные свойства и функции клеточной мембраны:

  • Матричная
  • Барьерная
  • Транспортная
  • Энергетическая
  • Механическая
  • Ферментативная
  • Рецепторная
  • Защитная
  • Маркировочная
  • Биопотенциальная

Какую функцию выполняет в клетке плазматическая мембрана?
  1. Отграничивает содержимое клетки;
  2. Осуществляет поступление веществ в клетку;
  3. Обеспечивает удаление ряда веществ из клетки.
Структура мембраны клетки

Клеточные мембраны включают липиды 3 классов:

  • Гликолипиды;
  • Фосфолипиды;
  • Холестерол.

В основном мембрана клетки состоит из белков и липидов, и имеет толщину не более 11 нм. От 40 до 90% всех липидов составляют фосфолипиды. Также важно отметить гликолипиды, которые являются одним из основных компонентов мембраны.

Структура клеточной мембраны трехслойна. В центре располагается однородный жидкий билипидный слой, а белки закрывают его с двух сторон (как мозаику), отчасти проникая в толщу. Также белки необходимы для мембраны, чтобы пропускать внутрь клеток и транспортировать из них наружу особые вещества, которые не могут проникнуть через жировой слой. Например, ионы натрия и калия.

  • Это интересно — Сильные, слабые кислоты и основания. Свойства
Строение клетки — видео

pristor.ru

Срочно!!! 1 какую функцию выполняет клеточная мембрана ? 2. Для каких клеток характерна - Школьные Знания.com

1.Клеточная мембрана обладает односторонней проводимостью. Так, молекулы воды могут беспрепятственно проходить через клеточную мембрану, а молекулы других веществ проникают избирательно. Через клеточную мембрану клетка по лучает воду, питательные вещества, кислород, через нее уда¬ляются продукты клеточного обмена. Пространство внутри клетки тоже разделено мембранами. Они образуют эндоплазматическую сеть — сеть канальцев, емкостей, полостей, где хранятся вещества, выработанные клеткой. Эндоплазматическая сеть — это своеобразная транспортная система, по которой вещества перемещаются внутри клетки. Благодаря ей поддерживается двусторонняя связь между ядром и цитоплазмой, а также между различными органоидами клетки.2.Клеточная стенка — жёсткая оболочка клетки, расположенная снаружи от цитоплазматической мембраны и выполняющая структурные, защитные и транспортные функции. Обнаруживается у большинства бактерий, архей, грибов и растений. Животные и многие простейшие не имеют клеточной стенки.3.Передача и сохранение информации, участие в процессе размножения (ядро)4.У бактерий нет ядра, у всех остальных есть.Капсула есть только у бактерий. Она предохраняет бактерии от повреждений и высыхания. Создаёт дополнительный осмотический барьер и является источником резервных веществ. Препятствует фагоцетозу бактерий. Контакты между клетками - связывает между собой клетки ткани. Транспорт веществ между клетками - у бактерий его нет. Хромосомы - у бактерий нуклеоид, а у всех остальных хромосомы. У бактерий есть плазмиды, а у остальных его нет. У бактерий нет митохондрий, аппарата Гольджи, пластид, лизосом, пероксисом, вакуолей,  в отличии от остальных. Но есть мезосомы и пили, которых нет ни у растений, ни у животных и ни у грибов.

4.2

77 оценок

77 оценок

Оцени!

znanija.com

Клеточная мембрана | Биология

Клеточная мембрана также называется плазматической (или цитоплазматической) мембраной и плазмалеммой. Данная структура не только отделяет внутреннее содержимое клетки от внешней среды, но также входит с состав большинства клеточных органелл и ядра, в свою очередь отделяя их от гиалоплазмы (цитозоля) — вязко-жидкой части цитоплазмы. Договоримся называть цитоплазматической мембраной ту, которая отделяет содержимое клетки от внешней среды. Остальными терминами обозначать все мембраны.

Строение клеточной мембраны

В основе строения клеточной (биологической) мембраны лежит двойной слой липидов (жиров). Формирование такого слоя связано с особенностями их молекул. Липиды не растворяются в воде, а по-своему в ней конденсируются. Одна часть отдельно взятой молекулы липида представляет собой полярную головку (она притягивается водой, т. е. гидрофильна), а другая — пару длинных неполярных хвостов (эта часть молекулы отталкивается от воды, т. е. гидрофобна). Такое строение молекул заставляет их «прятать» хвосты от воды и поворачивать к воде свои полярные головки.

В результате образуется двойной липидный слой, в котором неполярные хвосты находятся внутри (обращены друг к другу), а полярные головки обращены наружу (к внешней среде и цитоплазме). Поверхность такой мембраны гидрофильна, а внутри она гидрофобна.

В клеточных мембранах среди липидов преобладают фосфолипиды (относятся к сложным липидам). Их головки содержат остаток фосфорной кислоты. Кроме фосфолипидов есть гликолипиды (липиды + углеводы) и холестерол (относится к стеролам). Последний придает мембране жесткость, размещаясь в ее толще между хвостами остальных липидов (холестерол полностью гидрофобный).

За счет электростатического взаимодействия, к заряженным головкам липидов присоединяются некоторые молекулы белков, которые становятся поверхностными мембранными белками. Другие белки взаимодействуют с неполярными хвостами, частично погружаются в двойной слой или пронизывают его насквозь.

Таким образом, клеточная мембрана состоит из двойного слоя липидов, поверхностных (периферических), погруженных (полуинтегральных) и пронизывающих (интегральных) белков. Кроме того, некоторые белки и липиды с внешней стороны мембраны связаны с углеводными цепями.

Это жидкостно-мозаичная модель строения мембраны была выдвинута в 70-х годах XX века. До этого предполагалась бутербродная модель строения, согласно которой липидный бислой находится внутри, а с внутренней и наружной стороны мембрана покрыта сплошными слоями поверхностных белков. Однако накопление экспериментальных данных опровергло эту гипотезу.

Толщина мембран у разных клеток составляет около 8 нм. Мембраны (даже разные стороны одной) отличаются между собой по процентному соотношению различных видов липидов, белков, ферментативной активности и др. Какие-то мембраны более жидкие и более проницаемые, другие более плотные.

Разрывы клеточной мембраны легко сливаются из-за физико-химических особенностей липидного бислоя. В плоскости мембраны липиды и белки (если только они не закреплены цитоскелетом) перемещаются.

Функции клеточной мембраны

Большинство погруженных в клеточную мембрану белков выполняют ферментативную функцию (являются ферментами). Часто (особенно в мембранах органоидов клетки) ферменты располагаются в определенной последовательности так, что продукты реакции, катализируемые одним ферментом, переходят ко второму, затем третьему и т. д. Образуется конвейер, который стабилизируют поверхностные белки, т. к. не дают ферментам плавать вдоль липидного бислоя.

Клеточная мембрана выполняет отграничивающую (барьерную) от окружающей среды и в то же время транспортную функции. Можно сказать, это ее самое главное назначение. Цитоплазматическая мембрана, обладая прочностью и избирательной проницаемостью, поддерживает постоянство внутреннего состава клетки (ее гомеостаз и целостность).

При этом транспорт веществ происходит различными способами. Транспорт по градиенту концентрации предполагает передвижение веществ из области с их большей концентрацией в область с меньшей (диффузия). Так, например, диффундируют газы (CO2, O2).

Бывает также транспорт против градиента концентрации, но с затратой энергии.

Транспорт бывает пассивным и облегченным (когда ему помогает какой-нибудь переносчик). Пассивная диффузия через клеточную мембрану возможна для жирорастворимых веществ.

Есть особые белки, делающие мембраны проницаемыми для сахаров и других водорастворимых веществ. Такие переносчики соединяются с транспортируемыми молекулами и протаскивают их через мембрану. Так переносится глюкоза внутрь эритроцитов.

Пронизывающие белки, объединяясь, могут образовывать пору для перемещения некоторых веществ через мембрану. Такие переносчики не перемещаются, а образуют в мембране канал и работают аналогично ферментам, связывая определенное вещество. Перенос осуществляется благодаря изменению конформации белка, благодаря чему в мембране образуются каналы. Пример — натрий-калиевый насос.

Транспортная функция клеточной мембраны эукариот также реализуется за счет эндоцитоза (и экзоцитоза). Благодаря этим механизмам в клетку (и из нее) попадают крупные молекулы биополимеров, даже целые клетки. Эндо- и экзоцитоз характерны не для всех клеток эукариот (у прокариот его вообще нет). Так эндоцитоз наблюдается у простейших и низших беспозвоночны; у млекопитающих лейкоциты и макрофаги поглощают вредные вещества и бактерии, т. е. эндоцитоз выполняет защитную функцию для организма.

Эндоцитоз делится на фагоцитоз (цитоплазма обволакивает крупные частицы) и пиноцитоз (захват капелек жидкости с растворенными в ней веществами). Механизм этих процессов приблизительно одинаков. Поглощаемые вещества на поверхности клеток окружаются мембраной. Образуется пузырек (фагоцитарный или пиноцитарный), который затем перемещается внутрь клетки.

Экзоцитоз — это выведение цитоплазматической мембраной веществ из клетки (гормонов, полисахаридов, белков, жиров и др.). Данные вещества заключаются в мембранные пузырьки, которые подходят к клеточной мембране. Обе мембраны сливаются и содержимое оказывается за пределами клетки.

Цитоплазматическая мембрана выполняет рецепторную функцию. Для этого на ее внешней стороне располагаются структуры, способные распознавать химический или физический раздражитель. Часть пронизывающих плазмалемму белков с наружней стороны соединены с полисахаридными цепочками (образуя гликопротеиды). Это своеобразные молекулярные рецепторы, улавливающие гормоны. Когда конкретный гормон связывается со своим рецептором, то изменяет его структуру. Это в свою очередь запускает механизм клеточного ответа. При этом могут открываться каналы, и в клетку могут начать поступать определенные вещества или выводиться из нее.

Рецепторная функция клеточных мембран хорошо изучена на основе действия гормона инсулина. При связывании инсулина с его рецептором-гликопротеидом происходит активация каталитической внутриклеточной части этого белка (фермента аденилатциклазы). Фермент синтезирует из АТФ циклическую АМФ. Уже она активирует или подавляет различные ферменты клеточного метаболизма.

Рецепторная функция цитоплазматической мембраны также включает распознавание соседних однотипных клеток. Такие клетки прикрепляются друг к другу различными межклеточными контактами.

В тканях с помощью межклеточных контактов клетки могут обмениваться между собой информацией с помощью специально синтезируемых низкомолекулярных веществ. Одним из примеров подобного взаимодействия является контактное торможение, когда клетки прекращают рост, получив информацию, что свободное пространство занято.

Межклеточные контакты бывают простыми (мембраны разных клеток прилегают друг к другу), замковыми (впячивания мембраны одной клетки в другую), десмосомы (когда мембраны соединены пучками поперечных волокон, проникающих в цитоплазму). Кроме того, есть вариант межклеточных контактов за счет медиаторов (посредников) — синапсы. В них сигнал передается не только химическим, но и электрическим способом. Синапсами передаются сигналы между нервными клетками, а также от нервных к мышечным.

biology.su

Урок биологии в 8 классе: «Клеточное строение организма и жизненные свойства клетки»

 

Домбровский Анатолий Францевич, учитель биологии и географии, первая квалификационная категория высшего уровня, КГУ Петровская средняя школа, село Петровка Тайыншинский район СКО

Цель: сформировать убеждение о том, что клетка — главный структурный и функциональный элемент организма;

Задачи:

Обучающая: Обеспечить в ходе урока усвоение и повторение знаний о строении животной клетки, структуре и функциях частей и органоидов клетки (ядро, цитоплазма, клеточная и ядерная мембраны, ЭПС и ее виды, комплекс Гольджи, митохондрии, лизосомы, хромосомы, ДНК);Развивающая: Развить у учащихся умение сравнивать и обобщать клетку человека и растительную клетку;Воспитательная: Содействовать в ходе урока формированию основных мировоззрений и убеждений о клеточности строения всего живого на нашей планете;

Тип урока: комбинированный урок.

Оборудование: Плакаты растительной и животной клетки, компьютер и мультимедийная доска, карточки

Ход урока:

I. Обобщение знаний по разделу: «Человек — как биологический вид» (блиц-опрос)

  1. Какой вклад в развитие науки о человеке внесли Гиппократ и Аристотель?
  2. Что изучает анатомия, физиология и гигиена?
  3. Что включает в себя понятие — здоровый образ жизни?
  4. Каково положение человека в системе животного мира?
  5. Что свидетельствует о близком родстве человека и человекообразных обезьян?
  6. Чем человек умелый отличается от австралопитека?
  7. Какие орудия могли изготавливать неандертальцы?
  8. Как называют первых ископаемых людей современного типа?
  9. Какие три большие расы людей выделяют сегодня?
  10. Назовите признаки указывающие на принадлежность людей к одному виду?

II. Изучение нового материала

Все живые существа состоят из клеток. Давайте вспомним, что такое клетка?

Клетка — наименьшая единица строения и жизнедеятельности живых организмов.

Все части и органы тела человека построены из клеток. Клетки обладают следующими свойствами: они растут, размножаются, участвуют в обмене веществ, активно реагируют на раздражение, обладают способностью к регенерации и передаче наследственной информации.

Все клетки разнообразны по форме и размеру. Форма и размеры клеток зависят от их функции (электронный адрес.4 рисунок 1).

Так, например, существуют клетки, имеющие форму двояковогнутого диска (эритроцит), или длинного волокна (нервная клетка).

По форме выделяют клетки: (с отростками, веретенообразные, круглые, плоские).

Размеры клеток тела человека варьируются от 2–7 мкм (у тромбоцитов) до гигантских размеров (до 140 мкм у яйцеклетки).

Несмотря на такое разнообразие все клетки тела человека имеют единый план строения. Основные части клетки: ядро, цитоплазма и клеточная мембрана (электронный адрес.5 рисунок 2).

Отграничивает клетку от окружающей среды клеточная мембрана. Мембрана служит защитной оболочкой клетки и активно участвует в регуляции обмена веществ между клеткой и окружающей средой, а также осуществляет связь с другими клетками.

Ядро — важная часть клетки, оно содержит наследственную информацию клетки.(рис. 3, 4 стр. 16, 17)

Цитоплазма заполняет большую часть клетки. Цитоплазма состоит из двух частей: жидкой части — гиалоплазмы и органоидов.

Органоиды — постоянные структуры клетки, выполняющие определенные функции. Давайте более подробно рассмотрим органоиды клетки человека. (рис. 2) стр. 16

Заполнение таблицы «Органоиды клетки» (работа с учебником)

Органоид

Особенности строения

Функции

Эндоплазматическая сеть

А) гранулярная (шероховатая)

Б) агранулярная (гладкая)

Система трубочек

На поверхности – рибосомы

Гладкая поверхность

Синтез белка

Синтез гликогена и жиров

Рибосомы

Самые маленькие органоиды округлой формы

Образование белка

Аппарат Гольджи

Трубочки и цистерны

Накопление и транспортировка веществ

Митохондрии

Состоит из двух мембран, внутренняя образует складки

Образование энергии (АТФ)

Лизосомы

Округлые тельца

Расщепление веществ

Многие ученые, исследовавшие клетки, пришли к выводу, что клетки животных, растений и микроорганизмов сходны по химическому составу и строению, это одно из основных положений клеточной теории.

— Как вы думаете, о чем свидетельствует данный вывод?

(Родство и единство происхождения всего живого. Эволюция живой природы началась с эволюции клетки. Исходный уровень организации живой материи — клеточный.)

Тем не менее клетки животных несколько отличаются от клеток растений, и следует знать эти отличия. (В клетках животных и человека отсутствуют пластиды, центральная вакуоль и целлюлозная клеточная стенка.)

Рассказ учителя о свойствах клетки. (Учащиеся заносят в тетрадь основные жизненные свойства клеток).

1.Обмен веществ — совокупность реакций, включающих поступление в клетку питательных веществ и выделение продуктов обмена; реакции биосинтеза сложных соединений и реакции распада веществ.

2. Биосинтез — способность живых клеток синтезировать определенные вещества из поступающих в нее компонентов. Большинство реакций ферментативные.

3. Дыхание — окисление и распад питательных веществ с выделением заключенной в них энергии, которая запасается в форме молекул АТФ и расходуется на внутриклеточные нужды при необходимости.

4. Рост — увеличение размеров клетки, количества цитоплазмы и органоидов в процессе активного биосинтеза веществ.

5. Раздражимость — способность клеток реагировать на изменение факторов окружающей среды изменением своей жизнедеятельности.

6. Деление — воспроизведение дочерних клеток из материнской. Лежит в основе регенерации тканей и органов, а также размножения и развития организмов.

III.Закрепление. (Кто быстрей)

1. Какая наука изучает клетки? Когда и кем впервые была открыта клетка? (Цитология. В 1665 г. Роберт Гук впервые открыл существование клетки при изучении среза коры пробкового дерева.)

2. Почему клеточные структуры называют «органоидами», а не «органами»? (Орган — многоклеточная структура, а органоид — часть клетки, выполняющая функции, свойственные органам в многоклеточных организмах.)

3. Какая часть клетки выполняет защитную функцию? (Клеточная мембрана защищает клетку от окружающей среды и обеспечивает избирательную проницаемость веществ в клетку.)

4. Чем представлена транспортная система клетки? (Эндоплазматическая сеть и комплекс Гольджи участвуют в транспорте веществ в пределах клетки, а клеточная мембрана осуществляет перенос веществ внутрь и наружу.)

5. Какова структура и функции ядра клетки? (Ядро содержит наследственную информацию о признаках данной клетки и целого организма, которая реализуется в синтезе определенных белков. Снаружи — ядерная мембрана, внутри — хроматин с уплотнениями — ядрышками.)

6. Что вы знаете о структуре и функциях хромосом? (Хромосомы представляют собой комплекс ДНК и белков. ДНК имеет вид двойной спирали и состоит из отдельных участков — генов, каждый из которых отвечает за синтез одного белка клетки и, следовательно, за развитие определенного признака. В соматических клетках 46 хромосом, в гаметах (половых клетках) — 23 хромосомы.)

7. Какие органоиды и каким образом обеспечивают клетку энергией для осуществления ее жизненных функций? (Митохондрии за счет окисления органических веществ синтезируют молекулы АТФ, в которых накапливается необходимая клетке энергия.)

8. В каких органоидах происходит непрерывный синтез различных органических соединений? (Рибосомы на поверхности гранулярной ЭПС синтезируют белок, комплекс Гольджи — сложные углеводы, каналы гладкой ЭПС — углеводы и жиры, митохондрии — АТФ, ядро — ДНК (перед делением клетки.)

9. В чем состоит функция лизосом? (Растворение отработанных веществ и частей клетки. У животных с метаморфозом лизосомы участвуют в редукции отдельных органов, например хвоста у головастиков. В случае длительного голодания разрушают все органоиды, кроме ядра, для поддержания жизни организма.)

10. Как осуществляется взаимодействие клеток друг с другом и органоидов внутри клетки? (Через клеточные мембраны соседних клеток, цитоплазматические мостики и межклеточное вещество. Через гиалоплазму.)

IV. Подведение итогов урока

V. Дом.задание:

§ 4–5; Заполнить таблицу в тетради «Строение клетки» стр. 17 учебника.

Используемые источники:

1. Учебник. Биология. Человек. Авторы: Е. А. Очкур, Л. Е. Аманжолова, Р. Е. Джумабаева Алматы «Мектеп» 2008 г. 2. Биология человека в таблицах, рисунках и схемах. Резанова Е.А, Антонова И.П, Резанов А.А. М., Издат-Школа 3. http://nsportal.ru/ 4. ttp://files.school-collection.edu.ru/ 5. http://school-collection.edu.ru/ 6. http://images.yandex.ru/

www.azbyka.kz

5.Клеточная мембрана, ее структурная организация, функции клеточной мембраны.

Плазматическая мембрана отделяет клетку и ее содержимое от окружающей среды. В настоящее время принята мозаичная модель строения клеточной мембраны. Согласно этой модели мембрана образована двумя слоями липидов, а белковые молекулы пронизывают толщу мембраны. Гидрофобные «хвосты» липидов, состоящие из остатков молекул жирных кислот, обращены внутрь двойного слоя. Снаружи располагаются гидрофильные «головки», состоящие из остатка молекулы спирта глицерина. Липиды являются основой мембраны, обеспечивают ее устойчивость и прочность, т.е. выполняют структурную (строительную) функцию. Эта функция возможна благодаря гидрофобности липидов.

Основная функция плазматической мембраны транспортная. Она обеспечивает поступление питательных веществ в клетку и выведение из нее продуктов обмена. Помимо этой функции, плазматическая мембрана выполняет следующие функции: барьерную, отграничивающую и рецепторную функции. Благодаря свойству избирательной проницаемости она регулирует химический состав внутренней среды клетки. В плазмалемме размещены молекулы рецепторов, которые избирательно распознают определенные биологически активные вещества. Наличие рецепторов в оболочке дает клеткам способность воспринимать сигналы извне, чтобы целесообразно реагировать на изменения в окружающей среде

6. Цитоплазма клетки, ее составные части и назначение

В цитоплазме различают основное вещество, органеллы и включения. Основное вещество цитоплазмы заполняет пространство между плазмалеммой, ядерной оболочкой и другими внутриклеточными структурами. Белковый состав гиалоплазмы разнообразен. Важнейшие из белков представлены ферментами гликолиза, обмена сахаров, азотистых оснований, аминокислот и липидов. Ряд белков гиалоплазмы служит субъединицами, из которых происходит сбор таких структур, как микротрубочки.

Основное вещество цитоплазмы образует истинную внутреннюю среду клетки, которая объединяет все внутриклеточные структуры и обеспечивает взаимодействие друг с другом. Выполнение матриксом объединяющей, а также каркасной функции может быть связана с помощью сверхмощного электронного микроскопа микротрабекулярной сети, образованной тонкими фибриллами. Также функционально цитоплазматический матрикс является местом осуществления внутриклеточного обмена. Через гиалоплазму осуществляется значительный объем внутриклеточных перемещений веществ и структур. Гиалоплазму следует рассматривать как сложную коллоидную систему, способную переходить из жидкого состояния в гелеобразное.

7. Органеллы общего назначения. Их структура и функции.

Органеллы общего назначения делят на мембранные и немембранные. Мембранные в свою очередь делятся на одномембранные и двумембранные. К одномембранным относят:

Эндоплазматический ретикулум (ЭПР). Представляет собой систему мембран, формирующих цистерны и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство - полости ЭПР.. Различают два вида ЭПР: шероховатый, содержащий на своей поверхности рибосомы и гладкий, мембраны которого рибосом не несут. Функции: разделяет цитоплазму клетки на изолированные отсеки, обеспечивая, тем самым пространственное отграничение друг от друга множества параллельно идущих различных реакций. Осуществляет синтез и расщепление углеводов и липидов (гладкий ЭПР) и обеспечивает синтез белка (шероховатый ЭПР), накапливает в каналах и полостях, а затем транспортирует к органоидам клетки продукты биосинтеза.

Аппарат Гольджи. Органоид, обычно расположенный около клеточного ядра (в животных клетках часто вблизи клеточного центра). Представляет собой стопку уплощенных цистерн с расширенными краями, состоит из 4-6 цистерн. Число стопок Гольджи в клетке колеблется от одной до нескольких сотен. Важнейшая функция комплекса Гольджи - выведение из клетки различных секретов (ферментов, гормонов), поэтому он хорошо развит в секреторных клетках. Здесь происходит синтез сложных углеводов из про-стых сахаров, созревание белков, образование лизосом.

Лизосомы. Самые мелкие одномембранные органоиды клетки, представляющие собой пузырьки диа-метром 0,2-0,8 мкм, содержащие до 60 гидролитических ферментов,. Образование лизосом происходит в аппарате Гольджи,. Расщепление веществ с помощью ферментов называют лизисом, отсюда и название органоида. Различают: первичные вторичные лизосомы - лизосомы, образовавшиеся в результате слияния первичных лизосом с пиноцитозными или фагоцитозными вакуолями; в них происходит переваривание и лизис поступивших в клетку веществ (поэтому часто их называют пищеварительными вакуолями): Иногда с участием лизосом происходит саморазрушение клетки. Этот процесс называют автолизом. Обычно это происходит при некоторых процессах дифференцировки Вакуоли — крупные мембранные пузырьки или полости в цитоплазме, заполненные клеточным соком. Вакуоли образуются в клетках растений и грибов из пузыревидных расширений эндоплазматического ретикулума или из пузырьков комплекса Гольджи. В меристематических клетках растений вначале возникает много мелких вакуолей. Увеличиваясь, они сливаются в центральную вакуоль, которая занимает до 70—90% объема клетки и может быть пронизана тяжами цитоплазмы Функции вакуолей. Вакуоли играют главную роль в поглощении воды растительными клетками. Вода путем осмоса через ее мембрану поступает в вакуоль, клеточный сок которой является более концентрированным, чем цитоплазма, и оказывает давление на цитоплазму, а следовательно, и на оболочку клетки. В результате в клетке развивается тургорное давление, В запасающих тканях растений вместо одной центральной часто бывает несколько вакуолей, в которых скапливаются запасные питательные вещества (жиры, белки). Сократительные (пульсирующие) вакуоли служат для осмотической регуляции, прежде всего, у пресноводных простейших, Сократительные вакуоли поглощают избыток воды и затем выводят ее наружу путем сокращений.

К двумембранным органоидам относятся

Пластиды - характерные органеллы клеток автотрофных эукариотических организмов. Их окраска, форма и размеры весьма разнообразны. Различают хло-ропласты, хромопласты и лейкопласты. Все типы пластид генетически родственны друг другу, и одни их виды могут превращаться в другие: Хлоропласты имеют зеленый цвет, обусловленный присутствием основного пигмента — хлорофилла. Хлоропласты ограничены двумя мембранами — наружной и внутренней. Наружная мембрана отграничивает жидкую внутреннюю гомогенную среду хлоропласта — строму (матрикс). В строме содержатся белки, липиды, ДНК (кольцевая молекула), РНК, рибосомы и запасные вещества (липиды, крахмальные и белковые зерна) а также ферменты, участвующие в фиксации углекислого газа. Внутренняя мембрана хлоропласта образует впячивания внутрь стромы —тилакоиды. Именно в мембранах тилакоидов локализованы светочувствительные пигменты, а также переносчики электронов и протонов, которые участвуют в поглощении и преобразовании энергии света. Хлоропласты в клетке осуществляют процесс фотосинтеза. Лейкопласты — мелкие бесцветные пластиды различной формы Лейкопласты в основном встречаются в клетках органов, скрытых от солнечного света (корней, корневищ, клубней, семян). Они осуществляют вторичный синтез и накопление запасных питательных веществ — крахмала, реже жиров и белков. Хромопласты отличаются от других пластид своеобразной формой и окраской (оранжевые, желтые, красные). Хромопласты лишены хлорофилла и поэтому не способны к фотосинтезу Митохондрии - неотъемлемые компоненты всех эукариотических клеток. толщиной 0,5 мкм и длиной до 7—10 мкм. Митохондрии ограничены двумя мембранами — наружной и внутренне. Наружная мембрана отделяет ее от гиалоплазмы. Внутренняя мембрана образует множество впячиваний внутрь митохондрий — так называемых крист. На мембране крист или внутри нее располагаются ферменты, которые участвуют в кислородном дыхании Ограниченное ею внутреннее содержимое митохондрии {матрикс) по составу близко к цитоплазме. Матрикс содержит различные белки, в том числе ферменты, ДНК (кольцевая молекула), все типы РНК, аминокислоты, рибосомы, ряд витаминов. ДНК обеспечивает некоторую генетическую автономность митохондрий, хотя в целом их работа координируется ДНК ядра. Митохондрии являются энергетической станцией клетки.

Немембранные органеллы:

Клеточный центр. В клетках большинства животных, а также некоторых грибов, водорослей, мхов и папоротников имеются центриоли. Расположены они обычно в центре клетки, что и определило их название . Центриоли представляют собой полые цилиндры длиной не более 0,5 мкм. Они располагаются парами перпендикулярно одна к другой. Каждая центриоль построена из девяти триплетов микротрубочек Основная функция центриолей — организация микротрубочек веретена деления клетки.

Рибосомы — это мельчайшие сферические гранулы, являющиеся местом синтеза белка из аминокислот. Они обнаружены в клетках всех организмов. Рибосомы представлены в клетке огромным числом: за клеточный цикл их образуется около 10 млн. штук. В состав рибосом входит множество молекул различных белков и несколько молекул РНК. Полная работающая рибосома состоит из двух неравных субъединиц. При объединении в рибосому малая субъединица ложится одним концом на один из выступов большой субъединицы. В состав малой субъединицы входит одна молекула РНК, в состав большой — три

Цитоскелет. Одной из отличительных особенностей эукариотической клетки является наличие в ее цитоплазме скелетных образований в виде микротрубочек и пучков белковых волокон. Элементы цитоскелета, тесно связанные с наружной цитоплазматической мембраной и ядерной оболочкой, образуют сложные переплетения в цитоплазме. Цитоскелет образован микротрубочками и микрофиламентами, определяет форму клетки, участвует в ее движениях, в делении и перемещениях самой клетки, во внутриклеточном транспорте органоидов и отдельных соединений.

8.Органеллы специального назначения. Их структура и функции. Органеллы специального назначения присутствуют в клетках, специализированных к выполнению определенной функции, но в незначительном количестве могут встречаться и в других типах клеток. К ним относят, например, микроворсинки всасывающей поверхности эпителиальной клетки кишечника, реснички эпителия трахеи и бронхов, синаптические пузырьки, транспортирующие переносчиков нервного возбуждения с одной нервной клетки на другую или клетку рабочего органа, миофибриллы, от которых зависит сокращение мышцы.

9.Химический состав клетки, ее физико-химическое состояние и осмотические свойства протоплазмы клетки. Из известных в настоящее время науке 105 химических элементов, свыше 70 входят в состав организмов. Допустимо предположить, что нет таких элементов в природе, которые в каком-то количестве не входят в состав тех или иных организмов. Около 40 химических элементов, которые принимают участие в процессах обмена веществ и обладают выраженной биологической активностью, называются биогенными. Элементный анализ протоплазмы растений и животных показывает, что в среднем она содержит: O около 70% общей массы, С около 18% и Н около 10%. Затем следуют Ca, N, K, и Si, входящие в состав живых организмов в десятых долях процента, а также P, Mg, S, Cl, Na, Al и Fe, составляющие сотые доли процента. Названные элементы вместе с О, Н и С составляют 99,99 % массы живого организма. Эти элементы называются макроэлементами.

В несколько меньшем количестве встречаются Mn, B, Cu, Zi, Ba, Li, I, Co, Cr. Они составляют тысячные, десятитысячные и стотысячные доли процента по отношению к массе тела и получили название микроэлементы. Помимо них имеются еще и ультрамикроэлементы: Hg, Au, Ra и др., составляющие миллионы доли процентов. Важность того или иного элемента определяется не только количеством. Многие микро- и ультрамикроэлементы оказались необходимыми.

studfiles.net


Смотрите также