Наружная клеточная мембрана строение и функции таблица


Таблица по биологии "Строение и функции органоидов клетки"

Строение и функции органоидов клетки. цитоплазму (и-РНК, т-РНК, 1.Накапливаются вещества, 3. Сборка мембран клетки. (сперматозоиды, зооспоры,

uchitelya.com

Строение клетки

Элементарной и функциональной единицей всего живого на нашей планете является клетка. В данной статье Вы подробно узнаете об её строении, функциях органоидов, а также найдёте ответ на вопрос: «Чем отличается строение клеток растений и животных?».

Наука, которая изучает строение клетки и её функции, называется цитологией. Несмотря на свои незначительные размеры, данные части организма имеют сложную структуру. Внутри находится полужидкое вещество, именуемое цитоплазмой. Здесь проходят все жизненно важные процессы и располагаются составляющие части – органоиды. Узнать об их особенностях Вы сможете далее.

Самой важной частью является ядро. От цитоплазмы его отделяет оболочка, которая состоит из двух мембран. В них имеются поры, чтобы вещества могли попадать из ядра в цитоплазму и наоборот. Внутри находится ядерный сок (кариоплазма), в котором располагается ядрышко и хроматин.

Рис. 1. Строение ядра.

Именно ядро управляет жизнедеятельностью клетки и хранит генетическую информацию.

Функциями внутреннего содержимого ядра являются синтезирование белка и РНК. Из них образуются особые органеллы – рибосомы.

Располагаются вокруг эндоплазматической сети, при этом делая её поверхность шероховатой. Иногда рибосомы свободно располагаются в цитоплазме. К их функциям относится биосинтез белка.

ЭПС может иметь шероховатую либо гладкую поверхность. Шероховатая поверхность образуется за счёт наличия рибосом на ней.

К функциям ЭПС относится синтез белка и внутренняя транспортировка веществ. Часть образованных белков, углеводов и жиров по каналам эндоплазматической сети поступает в особые ёмкости для хранения. Называются эти полости аппаратом Гольджи, представлены они в виде стопок «цистерн», которые отделены от цитоплазмы мембраной.

Чаще всего располагается вблизи ядра. В его функции входит преобразование белка и образование лизосом. В данном комплексе хранятся вещества, которые были синтезированы самой клеткой для потребностей всего организма, и позднее выведутся из неё.

Лизосомы представлены в виде пищеварительных ферментов, которые заключены с помощью мембраны в пузырьки и разносятся по цитоплазме.

Эти органоиды покрыты двойной мембраной:

  • гладкая – наружная оболочка;
  • кристы – внутренний слой, имеющий складки и выступы.

Рис. 2. Строение митохондрий.

Функциями митохондрий является дыхание и преобразование питательных веществ в энергию. В кристах находится фермент, который синтезирует из питательных веществ молекулы АТФ. Это вещество является универсальным источником энергии для всевозможных процессов.

Данные органоиды содержат собственную нить ДНК и способны к самостоятельному размножению. Этот факт навёл учёных на мысль, что изначально митохондрии существовали самостоятельно, и были схожи с бактериями. Спустя время они поселились внутри клеточного организма, возможно, как паразитирующая особь. А, спустя много лет, стали органеллами, без которых не обходится ни одна эукариотическая клетка.

Клеточная стенка отделяет и защищает внутреннее содержимое от внешней среды. Она поддерживает форму, обеспечивает взаимосвязь с другими клетками, обеспечивает процесс обмена веществ. Состоит мембрана из двойного слоя липидов, между которыми находятся белки.

Растительная и животная клетка отличаются друг от друга своим строением, размерами и формами. А именно:

  • клеточная стенка у растительного организма имеет плотное строение за счёт наличия целлюлозы;
  • у растительной клетки есть пластиды и вакуоли;
  • животная клетка имеет центриоли, которые имеют значение в процессе деления;
  • наружная мембрана животного организма гибкая и может приобретать различные формы.

Рис. 3. Схема строения растительной и животной клетки.

Подытожить знания про основные части клеточного организма поможет следующая таблица:

Таблица «Строение клетки»

Органоид

Характеристика

Функции

Ядро

Имеет ядерную оболочку, внутри которой содержится ядерный сок с ядрышком и хроматином.

Транскрипция и хранение ДНК.

Плазматическая мембрана

Состоит из двух слоёв липидов, которые пронизаны белками.

Защищает содержимое, обеспечивает межклеточные обменные процессы, реагирует на раздражитель.

Цитоплазма

Полужидкая масса, содержащая липиды, белки, полисахариды и пр.

Объединение и взаимодействие органелл.

ЭПС

Мембранные мешочки двух типов (гладкие и шероховатые)

Синтез и транспортировка белков, липидов, стероидов.

Аппарат Гольджи

Располагается возле ядра в виде пузырьков или мембранных мешочков.

Образует лизосомы, выводит секреции.

Рибосомы

Имеют белок и РНК.

Образуют белок.

Лизосомы

В виде мешочка, внутри которого находятся ферменты.

Переваривание питательных веществ и отмерших частей.

Митохондрии

Снаружи покрыты мембраной, содержат кристы и многочисленные ферменты.

Образование АТФ и белка.

Пластиды

Покрыты мембраной. Представлены тремя видами: хлоропласты, лейкопласты, хромопласты.

Фотосинтез и запас веществ.

Вакуоли

Мешочки с клеточным соком.

Регулируют давление и сохраняют питательные вещества.

Центриоли

Имеет ДНК, РНК, белки, липиды, углеводы.

Участвует в процессе деления, образуя веретено деления.

Живой организм состоит из клеток, которые имеют достаточно сложное строение. Снаружи она покрыта плотной оболочкой, которая защищает внутреннее содержимое от воздействия внешней среды. Внутри находится ядро, регулирующее все происходящие процессы и хранящее генетический код. Вокруг ядра расположена цитоплазма с органоидами, каждый из которых имеет свои особенности и характеристику.

Средняя оценка: 4.3. Всего получено оценок: 1302.

Page 2

Образовака Биология

  • Нуклеиновые кислотыТест
  • УглеводыТест
  • Функции белковТест
  • Функции липидовТест
  • Пищевая цепьТест
  • ПопуляцияТест
  • Типы распределения популяцийТест
  • Эволюция человекаТест
  • ВыделениеТест
  • Экологическая пирамидаТест
  • Взаимодействие аллельных геновТест

obrazovaka.ru

Основные функции и особенности строения клеточной мембраны

Снаружи клетка покрыта плазматической мембраной (или наружной клеточной мембраной) толщиной около 6-10нм.

Строение клеточной мембраны

Клеточная мембрана это плотные пленки из белков и липидов (в основном, фосфолипидов). Молекулы липидов расположены упорядоченно — перпендикулярно к поверхности, в два слоя, так, что их части, интенсивно взаимодействующие с водой (гидрофильные), направлены наружу, а части, инертные к воде (гидрофобные) — внутрь.

Строение клеточной мембраны

Молекулы белка расположены несплошным слоем на поверхности липидного каркаса с обеих его сторон. Часть их погружена в липидный слой, а некоторые проходят через него насквозь, образуя участки, проницаемые для воды. Эти белки выполняют различные функции — одни из них являются ферментами, другие — транспортными белками, участвующими в переносе некоторых веществ из окружающей среды в цитоплазму и в обратном направлении.

Основные функции клеточной мембраны

Одним из основных свойств биологических мембран является избирательная проницаемость (полупроницаемость) — одни вещества проходят через них с трудом, другие легко и даже в сторону большей концентрации Так, для большинства клеток концентрация ионов Na внутри значительно ниже, чем в окружающей среде. Для ионов K характерно обратное соотношение: их концентрация внутри клетки выше, чем снаружи. Поэтому ионы Na всегда стремятся проникнуть в клетку, а ионы K — выйти наружу. Выравниванию концентраций этих ионов препятствует присутствие в мембране особой системы, играющей роль насоса, который откачивает ионы Na из клетки и одновременно накачивает ионы K внутрь.

Стремление ионов Na к перемещению снаружи внутрь используется для транспорта сахаров и аминокислот внутрь клетки. При активном удалении ионов Na из клетки создаются условия для поступления глюкозы и аминокислот внутрь ее.

Транспорт через клеточную мембрану

У многих клеток поглощение веществ происходит также путем фагоцитоза и пиноцитоза. При фагоцитозе гибкая наружная мембрана образует небольшое углубление, куда попадает захватываемая частица. Это углубление увеличивается, и, окруженная участком наружной мембраны, частица погружается в цитоплазму клетки. Явление фагоцитоза свойственно амебам и некоторым другим простейшим, а также лейкоцитам (фагоцитам). Аналогично происходит и поглощение клетками жидкостей, содержащих необходимые клетке вещества. Это явление было названо пиноцитозом.

Наружные мембраны различных клеток существенно отличаются как по химическому составу своих белков и липидов, так и по их относительному содержанию. Именно эти особенности определяют разнообразие в физиологической активности мембран различных клеток и их роль, в жизнедеятельности клеток и тканей.

С наружной мембраной связана эндоплазматическая сеть клетки. При помощи наружных мембран осуществляются различные типы межклеточных контактов, т.е. связь между отдельными клетками.

Для многих типов клеток характерно наличие на их поверхности большого количества выступов, складок, микроворсинок. Они способствуют как значительному увеличению площади поверхности клеток и улучшению обмена веществ, так и более прочным связям отдельных клеток друг с другом.

У растительных клеток снаружи клеточной мембраны имеются толстые, хорошо различимые в оптический микроскоп оболочки, состоящие из клетчатки (целлюлозы). Они создают прочную опору растительным тканям (древесина).

Некоторые клетки животного происхождения тоже имеют ряд внешних структур, находящихся поверх клеточной мембраны и имеющих защитный характер. Примером может быть хитин покровных клеток насекомых.

Функции клеточной мембраны (кратко)

ФункцияОписание
Защитный барьерОтделяет внутренние органеллы клетки от внешней среды
РегулирующаяПроизводит регуляцию обмена веществ между внутренним содержимым клетки и наружной средой
Разграничивающая (компартментализация)Разделение внутреннего пространства клетки на независимые блоки (компартменты)
Энергетическая- Накопление и трансформация энергии; - световые реакции фотосинтеза в хлоропластах;

- Всасывание и секреция.

Рецепторная (информационная)Участвует в формировании возбуждения и его проведения.
ДвигательнаяОсуществляет движение клетки или отдельных ее частей.

Оцените, пожалуйста, статью. Мы старались:) (6 оценок, среднее: 4,17 из 5) Загрузка...

animals-world.ru

Строение клетки. Клеточные органоиды — урок. Биология, Общие биологические закономерности (9–11 класс).

Наука, изучающая строение и функции клеток, называется цитология.

Клетка — элементарная структурная и функциональная единица живого.

Клетки, несмотря на свои малые размеры, устроены очень сложно. Внутреннее полужидкое содержимое клетки получило название цитоплазмы.

Цитоплазма является внутренней средой клетки, где проходят различные процессы и расположены компоненты клетки — органеллы (органоиды).

 Клеточное ядро — это важнейшая часть клетки. От цитоплазмы ядро отделено оболочкой, состоящей из двух мембран. В оболочке ядра имеются многочисленные поры для того, чтобы различные вещества могли попадать из цитоплазмы в ядро, и наоборот.

Внутреннее содержимое ядра получило название кариоплазмы или ядерного сока. В ядерном соке расположены хроматин и ядрышко.

Хроматин представляет собой нити ДНК. Если клетка начинает делиться, то нити хроматина плотно накручиваются спиралью на особые белки, как нитки на катушку. Такие плотные образования хорошо видны в микроскоп и называются хромосомами.

Ядро содержит генетическую информацию и управляет жизнедеятельностью клетки.

Ядрышко представляет собой плотное округлое тело внутри ядра. Обычно в ядре клетки бывает от одного до семи ядрышек. Они хорошо видны между делениями клетки, а во время деления — разрушаются.  Функция ядрышек — синтез РНК и белков, из которых формируются особые органоиды — рибосомы.Рибосомы участвуют в биосинтезе белка. В цитоплазме рибосомы чаще всего расположены на шероховатой эндоплазматической сети. Реже они свободно взвешены в цитоплазме клетки.Эндоплазматическая сеть (ЭПС) участвует в синтезе белков клетки и транспортировке веществ внутри клетки.Значительная часть синтезируемых клеткой веществ (белков, жиров, углеводов) не расходуется сразу, а по каналам ЭПС поступает для хранения в особые полости, уложенные своеобразными стопками, “цистернами”, и отграниченные от цитоплазмы мембраной. Эти полости получили название аппарат (комплекс) Гольджи. Чаще всего цистерны аппарата Гольджи расположены вблизи от ядра клетки.Аппарат Гольджи принимает участие в преобразовании белков клетки и синтезирует лизосомы — пищеварительные органеллы клетки.Лизосомы представляют собой пищеварительные ферменты, “упаковываются” в мембранные пузырьки, отпочковываются и разносятся по цитоплазме.В комплексе Гольджи также накапливаются вещества, которые клетка синтезирует для нужд всего организма и которые выводятся из клетки наружу. Митохондрии — энергетические органоиды клеток. Они преобразуют питательные вещества в энергию (АТФ), участвуют в дыхании клетки. Митохондрии покрыты двумя мембранами: наружная мембрана гладкая, а внутренняя имеет многочисленные складки и выступы — кристы. В мембрану крист встроены ферменты, синтезирующие за счет энергии питательных веществ, поглощенных клеткой, молекулы аденозинтрифосфата (АТФ). АТФ — это универсальный источник энергии для всех процессов, происходящих в клетке.Количество митохондрий в клетках различных живых существ и тканей неодинаково. Например, в сперматозоидах может быть всего одна митохондрия. Зато в клетках тканей, где велики энергетические затраты (в клетках летательных мышц у птиц, в клетках печени), этих органоидов бывает до нескольких тысяч. Митохондрии имеют собственную ДНК и могут самостоятельно размножаться (перед делением клетки число митохондрий в ней возрастает так, чтобы их хватило на две клетки).Митохондрии содержатся во всех эукариотических клетках, а вот в прокариотических клетках их нет. Этот факт, а также наличие в митохондриях ДНК позволило ученым выдвинуть гипотезу о том, что предки митохондрий когда то были свободноживущими существами, напоминающими бактерии. Со временем они поселились в клетках других организмов, возможно, паразитируя в них. А затем за многие миллионы лет превратились в важнейшие органоиды, без которых ни одна эукариотическая клетка не может существовать.

Чтобы клетка представляла собой единую систему, необходимо, чтобы все ее части (цитоплазма, ядро, органоиды) удерживались вместе. Для этого в процессе эволюции развилась плазматическая мембрана, которая, окружая каждую клетку, отделяет ее от внешней среды. Наружная мембрана защищает внутреннее содержимое клетки — цитоплазму и ядро — от повреждений, поддерживает постоянную форму клетки, обеспечивает связь клеток между собой, избирательно пропускает внутрь клетки необходимые вещества и выводит из клетки продукты обмена.

Строение мембраны одинаково у всех клеток. Основу мембраны составляет двойной слой молекул липидов, в котором расположены многочисленные молекулы белков. Некоторые белки находятся на поверхности липидного слоя, другие — пронизывают оба слоя липидов насквозь.

Специальные белки образуют тончайшие каналы, по которым внутрь клетки или из нее могут проходить ионы калия, натрия, кальция и некоторые другие ионы, имеющие маленький диаметр. Однако более крупные частицы (молекулы пищевых веществ — белки, углеводы, липиды) через мембранные каналы пройти не могут и попадают в клетку при помощи фагоцитоза или пиноцитоза:

  • В том месте, где пищевая частица прикасается к наружной мембране клетки, образуется впячивание, и частица попадает внутрь клетки, окруженная мембраной. Этот процесс называется фагоцитозом (клетки растений поверх наружной клеточной мембраны покрыты плотным слоем клетчатки (клеточной оболочкой) и не могут захватывать вещества при помощи фагоцитоза).
  • Пиноцитоз отличается от фагоцитоза лишь тем, что в этом случае впячивание наружной мембраны захватывает не твердые частицы, а капельки жидкости с растворенными в ней веществами. Это один из основных механизмов проникновения веществ в клетку.
Когда в клетку путем фагоцитоза или пиноцитоза попадают различные питательные вещества, их необходимо переварить (т.е. белки должны разрушиться до отдельных аминокислот, полисахариды — до молекул глюкозы или фруктозы, липиды — до глицерина и жирных кислот). Чтобы внутриклеточное переваривание стало возможным, фагоцитарный или пиноцитарный пузырек должен слиться с лизосомой. 

Источники:

Каменский А. А., Криксунов Е.А., Пасечник В.В. Биология. 9 класс // ДРОФАКаменский А. А., Криксунов Е.А., Пасечник В.В. Биология. Общая биология (базовый уровень) 10-11 класс // ДРОФА

Лернер Г.И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель

https://infourok.ru/material.html?mid=30020

http://mognovse.ru/mogno/669/668818/668818_html_m66d1dbb3.jpg

www.yaklass.ru

Клетка животная ее строение, функции и локализация (Таблица, схема)

Справочная таблица содержит особенности строения животной клетки, локализация и функции ее органойдов.

Клетка  - это основная структурная и функциональная единица живых организмов, которая осуществляет рост, развитие, обмен веществ и энергии, хранящей и реализующей генетическую информацию.

Клетка - это сложная система биополимеров, отделяющих от внешней среды цитолемой (плазматической мембраной) и состоящую из ядра и цитоплазмы, в которой распологаются органелы и включения.

1 - агранулярная (гладкая) эндоплазматическая сеть; 2 - гликокаликс; 3 - цитолемма (плазматическая мембрана); 4 - кортикальный слой цитоплазмы; 2+3+4 = поверхностный комплекс клетки; 5 - пиноцитозные пузырьки; 6 - митохондрия; 7 - промежуточные филаменты; 8 - секреторные гранулы; 9 - выделение секрета; 10 - комплекс Гольджи; 11 - транспортные пузырьки; 12 - лизосомы; 13 - фагосома; 14 - свободные рибосомы; 15 - полирибосома; 16 - гранулярная эндоплазматическая сеть; 17 - окаймленный пузырек; 18 - ядрышко; 19 - ядерная ламина; 20 - перинуклеарное пространство, ограниченное наружной и внутренней мембранами кариотеки; 21 - хроматин; 22 - поровый комплекс; 23 - клеточный центр; 24 - микротрубочка; 25 - пероксисома

Таблица строение животной клетки, особенности и функции органойдов

Органойд

Особенности строения органойдов животной клетки

Функции органойдов

Ядро животной клетки

1) оболочка (кариолемма):

— две мембраны, пронизанные порами

— между мембранами находится перенук­леарное пространство

— наружная мембрана связана с НПС

2) ядерные поры

— защита

— транспорт

— хранение генет информации

— регуляция процессов обмена веществ:

а) биосинтез

б) деление

в) активность клетки

3) ядерный сок: 

— по физическому состоянию близок к гиалоплазме

— по химическому состоянию содержит больше нуклеиновых кислот

4) ядрышки:

— немембранные компоненты ядра

— может быть одно или несколько

— образуются на определенных участками хромосом (ядрышковые организаторы)

— синтез рРНК

— синтез тРНК

— образование рибосом

5) хроматин – нити ДНК+белок

6) хромосома – сильно спирализованный хроматин, кт. содержит гены

Хромосома → 2 хроматиды (соединения в области центромеры) → 2 полухроматиды → хромонемы → микрофибриллы (30-45% ДНК+белок)

Хранение, передача и реали­зация наслед­ственной информации

7) вязкая кариоплазма

Эндоплазматическая сеть - ЭПС (ЭПР - ретикулум)

1) шероховатая (гранулярная) — поверхность покрыта рибосомами

синтез белка

— разграни­чительная

— транс­портная

— выведение из клетки ядовитых веществ

— синтез стероидов

2) гладкая (агранулярная) — покрыта липидами (гликоген и холестерин)

синтез и расщепление углеводов и липидов

Аппарат (комплекс) Гольджи (пластинчатый комплекс)

Уплощенные цистерны и канальца уложены в стопки (диктосомы)

— сортировка и упаковка макромолекул

— склад для хранения веществ

— образование первичных лизосом

— концентрация, освобождение и уплотнение межклеточного секрета

— синтез глико- и липопротеидов

— накопление и выведение из клетки веществ

— образование борозды деления при митозе

Видоизме­нённый аппарат Гольджи – акросома у спермато­зоидов

Хранение веществ, растворяющих оболочку яйцеклетки.

Лизосомы

Пузырек, заполне­нный пищевари­тельными (гидролити­ческими) ферментами

— перева­ривание поглощен­ного материала (клеточное пищеварение)

— распад продуктов обмена

— разрушение бактерий и вирусов

— автолиз (разрушение частей клетки и отмерших органелл)

— удаление целых клеток и межкле­точного вещества

Пероксисома

Пузырек, содержащий пероксидазу

окисление органических веществ

Сферосома

Овальный органоид, содержащий жир

синтез и накопление липидов

Вакуоль

Полость в цитоплазме, содержащая клеточный сок

Клеточный сок:

— это содержимое вакуоли – водный раствор различных органических и неорганических веществ

— основная часть Н2О – 70-90 %

— вакуольный сок имеет кислую реакцию

— химический состав клеточного сока различен. Зависит от вида растения, состояния клетки и расположения клетки в теле растения

— резервуар для h3O и растворенных соединений

— функция лизосом (пищева­ри­тельная вакуоль)

— осморе­гуляция и выделение (сократи­тельная вакуоль)

Митохондрии  

1) наружная (гладкая) мембрана имеет выпячивания – кристы

2) кристы – ферменты, участвующие в преобразовании энергии

3) внутреннее пространство – матрикс:

— ДНК

— рибосомы

— белки – ферменты

— РНК

Органеллы, в которых происходит процессаэробного дыхания.

— синтез АТФ

— синтез митохон­дриальных белков

— синтез нуклииновых кислот

— синтез углеводов и липидов

— образование митохон­дриальных рибосом

Рибосома

В типичной эукариотической клетке имеется порядка 50000 свободных рибосом

1) состоит из рРНК, белка и магния

2) две субъединицы: большая и малая

— представляют собой места синтеза белка (для внутриклеточного использования)

Центросома (клеточный центр)

1) состоит из 2-х центриолей и лучистой сферы

2) центриоли расположены перпендикулярно друг другу и образованы 9-ю триплетами микротрубочек

3) имеют свою собственную молекулу ДНК

— центриоли определяют полюса при делении клетки

— центросферы формируют короткие и длинные нити веретена деления

Микрофиламенты

Нитевидные структуры состоящие из белков актина и миозина.

— сократительная, обеспечивают подвижность клетки

— образуют цитоскелет

Микротрубочки

Нитевидные структуры животной клетки, состоящие из белка тубулина

— опорная

Микрофибриллы

Нити, состоящие из белка керотина

— опорная

Включения

Непостоянные компоненты: минеральные (соли), витаминные, пигментные

Непостоянные компоненты животной клетки, которые накапливаются и исчезают в процессе жизнедеятельности клетки

Трофические (питательные вещества):

— Углеводы (крахмала). Зерна крахмала находятся в лейкопластах (амилопластах)→цитоплазма→клетки

— Белки.  Находятся в семенах, кристалоподобных структурах в цитоплазме и ядре. Чаще накапливаются в вакуолях (в клеточном соке)

— Жиры. Находятся в гиалоплазме в виде бесцветных капель.

— секреторные (гормоны)

— экскреторные (продукты обмена):

а) оксалат кальция

б) карбонат кальция или кремнезем (кристалический песок)

Цитоплазма

Состоит главным образом из воды, в которой растворены разнообразные вещества, включая глюкозу, белки и ионы.

Цитоплазма пронизана цитоскелетом, образующим «каркас» клетки.

Плазмалемма (плазматическая мембрана)

Замыкает поверхность клетки и контактирует с окружающей средой.

Она обладает выборочной проницаемостью и регулирует перемещение растворенных веществ между клеткой и ее окружением. Плазматическая мембрана выполняет целый ряд функций, многие из которых обеспечиваются белками, входящими в ее состав.

Структура строения клетки

 

infotables.ru

Клеточная мембрана: ее строение и функции

Содержание:

  • Что такое клеточная мембрана
  • История исследования клеточной мембраны
  • Свойства и функции клеточной мембраны
  • Строение клеточной мембраны
  • Клеточная мембрана, видео
  • Ни для кого не секрет, что все живые существа на нашей планете состоят их клеток, этих бесчисленных «атомов» органической материи. Клетки же в свою очередь окружены специальной защитной оболочкой – мембраной, играющей очень важную роль в жизнедеятельности клетки, причем функции клеточной мембраны не ограничиваются только лишь защитой клетки, а представляют собой сложнейший механизм, участвующий в размножении, питании, регенерации клетки.

    Что такое клеточная мембрана

    Само слово «мембрана» с латыни переводится как «пленка», хотя мембрана представляет собой не просто своего роду пленку, в которую обернута клетка, а совокупность двух пленок, соединенных между собой и обладающих различными свойствами. На самом деле клеточная мембрана это трехслойная липопротеиновая (жиро-белковая) оболочка, отделяющая каждую клетку от соседних клеток и окружающей среды, и осуществляющая управляемый обмен между клетками и окружающей средой, так звучит академическое определение того что, представляет собой клеточная мембрана.

    Значение мембраны просто огромно, ведь она не просто отделяет одну клетку от другой, но и обеспечивает взаимодействие клетки, как с другими клетками, так и окружающей средой.

    История исследования клеточной мембраны

    Важный вклад в исследование клеточной мембраны был сделан двумя немецкими учеными Гортером и Гренделем в далеком 1925 году. Именно тогда им удалось провести сложный биологический эксперимент над красными кровяными тельцами – эритроцитами, в ходе которых ученые получили так званые «тени», пустые оболочки эритроцитов, которые сложили в одну стопку и измерили площадь поверхности, а также вычислили количество липидов в них. На основании полученного количества липидов ученые пришли к выводу, что их как раз хватаем на двойной слой клеточной мембраны.

    В 1935 году еще одна пара исследователей клеточной мембраны, на этот раз американцы Даниэль и Доусон после целой серии долгих экспериментов установили содержание белка в клеточной мембране. Иначе никак нельзя было объяснить, почему мембрана обладает таким высоким показателем поверхностного натяжения. Ученые остроумно представили модель клеточной мембраны в виде сэндвича, в котором роль хлеба играют однородные липидо-белковые слои, а между ними вместо масла – пустота.

    В 1950 году с появлением электронного микроскопа теорию Даниэля и Доусона удалось подтвердить уже практическими наблюдениями – на микрофотографиях клеточной мембраны были отчетливо видны слои из липидных и белковых головок и также пустое пространство между ними.

    В 1960 году американский биолог Дж. Робертсон разработал теорию о трехслойном строении клеточных мембран, которая долгое время считалась единственной верной, но с дальнейшим развитием науки, стали появляться сомнения в ее непогрешимости. Так, например, с точки зрения термодинамики клеткам было бы сложно и трудозатратно транспортировать необходимые полезные вещества через весь «сэндвич»

    И только в 1972 году американские биологи С. Сингер и Г. Николсон смогли объяснить нестыковки теории Робертсона с помощью новой жидкостно-мозаичной модели клеточной мембраны. В частности они установили что клеточная мембрана не однородна по своему составу, более того – ассиметрична и наполнена жидкостью. К тому же клетки пребывают в постоянном движении. А пресловутые белки, которые входят в состав клеточной мембраны имеют разные строения и функции.

    Рисунок клеточной мембраны.

    Свойства и функции клеточной мембраны

    Теперь давайте разберем, какие функции выполняет клеточная мембрана:

    Барьерная функция клеточной мембраны — мембрана как самый настоящий пограничник, стоит на страже границ клетки, задерживая, не пропуская вредные или попросту неподходящие молекулы

    Транспортная функция клеточной мембраны – мембрана является не только пограничником у ворот клетки, но и своеобразным таможенным пропускным пунктом, через нее постоянно проходит обмен полезными веществами с другими клетками и окружающей средой.

    Матричная функция – именно клеточная мембрана определяет расположение органоидов клетки относительно друг друга, регулирует взаимодействие между ними.

    Механическая функция – отвечает за ограничение одной клетки от другой и параллельно за правильно соединение клеток друг с другом, за формирование их в однородную ткань.

    Защитная функция клеточной мембраны является основой для построения защитного щита клетки. В природе примером этой функции может быть твердая древесина, плотная кожура, защитный панцирь у черепахи, все это благодаря защитной функции мембраны.

    Энергетическая функция – фотосинтез и клеточное дыхание были бы невозможны без участия белка, содержащегося в клеточной мембране. Именно через белковые каналы происходит важный клеточный энергообмен, в этом заключаются самые главные функции белка в клеточной мембране.

    Рецепторная функция – и опять возвращаемся к белкам мембраны, помимо собственно энергообмена они обладают еще одной очень важной функцией – они служат рецепторами клеточной мембраны, благодаря которым клетка получает сигнал от гормонов и нейромедиаторов. Все это необходимо для нормального течения гормональных процессов и проведения нервного импульса.

    Ферментативная функция – еще одна важная функция, осуществляемая некоторыми белками клетки. Например, благодаря этой функции в эпителии кишечника происходит синтез пищеварительных ферментов.

    Также помимо всего этого через клеточную мембрану осуществляется клеточный обмен, который может проходить тремя разными реакциями:

    • Фагоцитоз – это клеточный обмен, при котором встроенные в мембрану клетки-фагоциты захватывают и переваривают различные питательные вещества.
    • Пиноцитоз – представляет собой процесс захвата мембраной клетки, соприкасающиеся с ней молекулы жидкости. Для этого на поверхности мембраны образуются специальные усики, которые как будто окружают каплю жидкости, образуя пузырек, которые впоследствии «проглатывается» мембраной.
    • Экзоцитоз – представляет собой обратный процесс, когда клетка через мембрану выделяет секреторную функциональную жидкость на поверхность.

    Строение клеточной мембраны

    В клеточной мембране имеются липиды трех классов:

    • фосфолипиды (представляются собой комбинацию жиров и фосфора),
    • гликолипиды (представляют собой комбинацию жиров и углеводов),
    • холестерол.

    Фосфолипиды и гликолипиды в свою очередь состоят из гидрофильной головки, в которую отходят два длинных гидрофобных хвостика. Холестерол же занимает пространство между этими хвостиками, не давая им изгибаться, все это в некоторых случаях делает мембрану определенных клеток весьма жесткой. Помимо всего этого молекулы холестерола упорядочивают структуру клеточной мембраны.

    Но как бы там ни было, а самой важной частью строения клеточной мембраны является белок, точнее разные белки, играющие различные важные роли. Несмотря на разнообразие белков содержащихся в мембране есть нечто, что их объединяет – вокруг всех белков мембраны расположены аннулярные липиды. Аннулярные липиды – это особые структурированные жиры, которые служат своеобразной защитной оболочкой для белков, без которой они бы попросту не работали.

    Структура клеточной мембраны имеет три слоя: основу клеточной мембраны составляет однородный жидкий билипидный слой. Белки же покрывают его с обеих сторон наподобие мозаики. Именно белки помимо описанных выше функций также играют роль своеобразных каналов, по которым сквозь мембрану проходят вещества, неспособные проникнуть через жидкий слой мембраны. К таким относятся, например, ионы калия и натрия, для их проникновения через мембрану природой предусмотрены специальные ионные каналы клеточных мембран. Иными словами белки обеспечивают проницаемость клеточных мембран.

    Если смотреть на клеточную мембрану через микроскоп, мы увидим слой липидов, образованный маленькими шарообразными молекулами по которому плавают словно по морю белки. Теперь вы знаете, какие вещества входят в состав клеточной мембраны.

    Клеточная мембрана, видео

    И в завершение образовательное видео о клеточной мембране.

    Эта статья доступна на английском языке — Cell Membrane.

    www.poznavayka.org


    Смотрите также