Образует средний слой стенок кровеносных сосудов


Общий план строения стенки сосуда

Стенка сосуда состоит из трех оболочек: внутренней, средней и наружной. Внутренняя оболочка представлена эндотелием, субэндотелиальным слоем - рыхлой, волокнистой неоформленной соедини­тельной тканью, внутренней эластической мембраной (в артериях мышечного типа). Средняя оболочка состоит из гладких миоцитов и между ними расположенных эластических и коллагеновых волокон, а также эластических окончатых мембран (в артериях эластического типа). В артериях мышечного типа средняя оболочка отделена от наружной эластической мембраной. Наружная оболочка образована рыхлой волокнистой неоформленной соединительной тканью. В сред­ней (у крупных сосудов) и наружной оболочках вен и артерий распо­лагаются мелкие сосуды, кровоснабжающие сосудистую стенку, сосуды сосудов и нервные стволики. По диаметру сосуды подразде­ляются на сосуды крупного, среднего и мелкого калибра.

Артерия мышечного типа состоит из трех оболочек. Внутрен­няя оболочка представлена эндотелием, подэндотелиальным слоем и внутренней Эластической мембраной. Последняя отделяет внут­реннюю оболочку от средней. Средняя оболочка наиболее развита в артериях. Она состоит из расположенных по спирали гладких мио­цитов, обеспечивающих при своем сокращении уменьшение про­света сосуда, поддерживающих кровяное давление и проталкива­ние крови в дистальные отделы. Между миоцитами в небольшом количестве имеются преимущественно эластические волокна. На границе между наружной и средней оболочкой располагается наружная эластическая мембрана. Наружная оболочка состоит из рыхлой соединительной ткани с нервными волокнами и кровенос­ными сосудами. Эластический каркас, эластические волокна и эластические пограничные мембраны препятствуют спаданию арте­рий, что обеспечивает непрерывность тока крови в них.

Вена мышечного типа. Ее стенка представлена тремя оболоч­ками. Внутренняя состоит из эндотелия и подэндотелиального слоя. В средней оболочке - пучки гладких миоцитов, между кото­рыми преимущественно коллагеновые волокна. В наружной, наи­более широкой оболочке, в ее рыхлой волокнистой соединительной ткани - сосуды и могут быть поперечно-срезанные гладкие мио­циты. Просвет сосуда неправильной формы, в просвете видны эритроциты.

Отличия артерии мышечного типа от вены мышечного типа. Стенка артерий толще стенки соответствующих вен, в венах отсут­ствуют внутненняя и наружная эластические мембраны; самая широкая оболочка в атрериях - средняя, а в венах - наружная. Вены снабжены клапанами; в венах мышечные клетки в средней оболочке развиты слабее, чем в артериях, и расположены пучками, разделенными соединителыютканными прослойками, в которых преобладают коллагеновые волокна над эластическими. Просвет вены часто спавшийся и в просвете видны форменные элементы крови. В артериях просвет зияет и форменные элементы крови обычно отсутствуют.

Кровеносные капилляры – это самые тонкие и многочисленные сосуды. Их просвет может варьировать от 4,5 мкм в соматических капиллярах до 20-30 мкм в синусоидных. Это обусловлено как органными особенностями капилляров, так и функциональным состоянием. Встречаются еще более широкие капилляры - капил­лярные вместилища - лакуны в пещеристых телах полового члена. Стенки капилляров резко истончены до трех тончайших слоев, что необходимо для обменных процессов. В стенке капилля­ров различают: внутренний слои, представленный эндотелиоцитами, выстилающими сосуд изнутри и расположенными на базальной мембране; средний - из отростчатых клеток-перицитов, нахо­дящихся в расщелинах базальной мембраны и участвующих в регуляции просвета сосуда. Наружный слой представлен тонкими коллагеновыми и аргирофильными волокнами и адвентициальными клетками, сопровождающими снаружи стенку капилляров, артериол, венул. Капилляры связывают артерии и вены.

Различают капилляры трех типов:

1. капилляры соматического типа (в коже, в мышцах), их эндотелий нефенестрирован, базальная мембрана сплошная;

2. капилляры висцерального типа (почки, кишечник), эндотелий их фенестрирован, но базальная мембрана непрерывна;

3. синусоидные капилляры (печень, кроветворные органы), с большим диаметром (20—30 мкм), между эндотелиоцитами имеются щели, базальная мембрана прерывистая или может полностью отсутствовать, отсутствуют также струк­туры наружного слоя.

В микроциркуляторное русло кроме капилляров входят артериолы, венулы, а также артериоло-венулярные анастомозы.

Артериолы - наиболее мелкие артериальные сосуды. Оболочки в артериолах и венулах истончены. В артериолах имеются компо­ненты всех трех оболочек. Внутренняя - представлена эндотелием, лежащим на базальной мембране, средняя - одним слоем гладких мышечных клеток, имеющих спиралевидное направление. Наруж­ная оболочка образована адвентициальными клетками рыхлой сое­динительной ткани и соединительнотканными волокнами. Венулы (посткапиллярные) имеют только две оболочки: внутреннюю с эндотелием и наружную - с адвентициальными клетками. Гладкие мышечные клетки в стенке сосуда отсутствуют.

Артериоло-венулярные анастомозы (АВА). Различают истин­ные АВА - шунты, по которым сбрасывается артериальная кровь, и атипичные АВА - полушунты, по которым течет смешанная кровь. Истинные анастомозы подразделяются на неимеющие спе­циальных устройств и анастомозы, снабженные специальными запирательными устройствами. К последним относят артериоло-венулярные анастомозы эпителиодного типа, содержащие в сред­ней оболочке клетки со светлой цитоплазмой. На их поверхности много неравных окончаний. Выделяют эти клетки ацетилхолин. Эти эпителиодные клетки способны набухать, а по мнению других авторов, сокращаются. В результате этого просвет сосуда закрывается. Анастомозы эпителиодного типа могут быть сложными (клубочковыми) и простыми. Сложные АВА эпителиоидного типа отличаются от простых тем, что приносящая афферентная артериола делится на 2-4 ветви, которые переходят в венозный сег­мент. Эти ветви окружены одной общей соединительнотканной оболочкой (например, в дерме кожи и гиподерме). Также встре­чаются анастомозы замыкательного типа, у которых в подэндотелиальном слое в виде валиков имеются гладкие миоциты, выступающие в просвет и замыкающие его при своем сокращении. Боль­шая роль принадлежит АВА в компенсаторных реакциях орга­низма при нарушении кровообращения и развитии патологических процессов.

Лимфатические сосуды подразделяются на лимфатические капилляры, внутри - и внеорганные лимфатические сосуды и главные лимфатические стволы: грудной проток и правый лимфа­тический проток. Лимфатические капилляры начинаются в тканях слепо. Их стенка состоит из крупных эндотелиоцитов. Базальная мембрана и перициты отсутствуют. С окружающей тканью эндоте­лий связан фиксирующиими филаментами, вплетающимися в окружающую соединительную ткань. Более крупные лимфатичес­кие сосуды по строению напоминают вены. Для них характерно наличие клапанов и хорошо развитой наружной оболочки. Среди лимфатических сосудов различают сосуды мышечного типа и лим­фатические сосуды безмышечного волокнистого типа.

studfiles.net

Стенка кровеносных сосудов состоит тканей. Строение вен со средним развитием миоцитов. Артериолы и капилляры.

Строение и свойства стенок сосудов зависят от функций, выполняемых сосудами в целостной сосудистой системе человека. В составе стенок сосудов выделяют внутреннюю (интима ), среднюю (медиа ) и наружную (адвентиция ) оболочки.

Все кровеносные сосуды и полости сердца изнутри выстланы слоем клеток эндотелия, составляющим часть интимы сосудов. Эндотелий в неповрежденных сосудах образует гладкую внутреннюю поверхность, что способствует снижению сопротивления кровотоку, предохраняет от повреждения и препятствует тромбообразованию. Эндотелиальные клетки участвуют в транспорте веществ через сосудистые стенки и реагируют на механические и другие воздействия синтезом и секрецией сосудоактивных и прочих сигнальных молекул.

Они образуют сеть трубок, которые переносят кровь от сердца к тканям тела и обратно в сердце. Кровеносные сосуды можно разделить на артериальную систему и венозную систему. Это набор сосудов, которые отходят от сердца, разветвляются, каждая ветвь в меньшем калибре, пока не достигнет капилляров.

Они образуют набор сосудов, которые отходят от тканей, образуясь в ветвях большего калибра до достижения сердца. Кровеносные сосуды, которые переносят кровь из сердца, являются артериями. Они становятся очень разветвленными, постепенно уменьшаются и заканчиваются на небольших сосудах, которые определяют артериолы. Из этих сосудов кровь способна выполнять свои функции питания и поглощения через сеть микроскопических каналов, называемых капиллярами, которые позволяют крови обмениваться веществами с тканями.

В состав внутренней оболочки (интимы) сосудов входит также сеть эластических волокон, особенно сильно развитая в сосудах эластического типа — аорте и крупных артериальных сосудах.

В среднем слое циркулярно располагаются гладкомышечные волокна (клетки), способные сокращаться в ответ на различные воздействия. Таких волокон особенно много в сосудах мышечного типа — конечных мелких артериях и артериолах. При их сокращении происходит увеличение напряжения сосудистой стенки, уменьшение просвета сосудов и кровотока в более дистально расположенных сосудах вплоть до его остановки.

Из капилляров кровь собирается в венулах; Затем через вены большего диаметра снова достигает сердца. В этой тунике мы обнаруживаем небольшое нервное и сосудистое филе, которое предназначено для иннервации и орошения артерий. Найден только в больших артериях. Обнаружено в большинстве артерий в организме. Они состоят из эндотелиальных клеток. Кровеносные сосуды состоят из нескольких анастомозов, главным образом в сосудах головного мозга.

Анастомоз означает связь между артериями, венами и нервами, которые устанавливают связь между ними. Связь между двумя артериями происходит в артериальных ветвях, никогда в основных стволах. Иногда две артерии малого калибра анастомозируются, чтобы сформировать сосуд большего калибра. Зачастую соединение осуществляется длинным маршрутом, на тонких судах, обеспечивая залоговое обращение.

Наружный слой сосудистой стенки содержит коллагеновые волокна и жировые клетки. Коллагеновые волокна увеличивают устойчивость стенки артериальных сосудов к действию высокою давления крови и предохраняют их и венозные сосуды от чрезмерного растяжения и разрыва.

Рис. Строение стенок сосудов

Таблица. Структурно-функциональная организация стенки сосуда

Этот процесс происходит в головном мозге, чтобы обеспечить адекватный спрос на кислород к нервным клеткам, т.е. если закрывается мозговая артерия, область, орошаемая поврежденным сосудом, все равно будет получать кровь из другой артерии многоугольника, сохраняя нервную ткань. Капилляры представляют собой сосуды очень малого диаметра, образованные разветвлением сосудов. Его тонкие стенки образованы одним слоем тонких эндотелиальных клеток, которые вместе с низкой скоростью локального кровотока делают капилляры крови идеальным местом для обмена питательных веществ и метаболических остатков между кровью и ткани, орошаемые им.

Название

Характеристика

Эндотелий (интима)

Внутренняя, гладкая поверхность сосудов, состоящая преимущественно из одного слоя плоских клеток, основной мембраны и внутренней эластической пластинки

Состоит из нескольких взаимопроникающих мышечных слоев между внутренней и внешней эластичными пластинками

Однако этот кровоток не является постоянным, напротив, он прерывистый. Каждые несколько секунд или минут возникает явление, известное как вазомотивность, которое заключается в сокращении предкапиллярных метаартолетов и сфинктеров. Основным фактором, определяющим степень открытия и закрытия предкапиллярных метапластеролов и сфинктеров, будет концентрация кислорода в тканях.

Другими словами, чем больше потребление крови тканями, тем более продолжительные периоды капиллярного кровотока, которые остаются более частыми и их продолжительность. Это позволяет капиллярной крови переносить больше кислорода в ткани. В определенных областях тела, особенно в коже, кровь не циркулирует через капилляры, отвлекаясь непосредственно от артериол до венулов.

Эластические волокна

Расположены во внутренней, средней и наружной оболочках и образуют относительно густую сеть (особенно в интиме), легко могут быть растянуты в несколько раз и создают эластическое напряжение

Коллагеновые волокна

Расположены в средней и наружной оболочках, образуют сеть, оказывающую растяжению сосуда гораздо большее сопротивление, чем эластические волокна, но, имея складчатое строение, противодействуют кровотоку только в том случае, если сосуд растянут до определенной степени

По мере того, как кровь течет через капилляр, молекулы воды и растворенные частицы проникают внутрь и наружу через мембрану. Концентрация кислорода в капиллярной крови больше, чем в интерстициальной жидкости, поэтому большое количество кислорода перемещается в ткани, в отличие от концентрации углекислого газа, которая выше в тканях, и этот факт заставляет этот диоксид двигаться Кровь.

Источники: Берн, Роберт М. Леви, Мэтью Н. Коппен, Брюс М. и Статон. Аневризма: дилатация, расположенная в стенке артерии или сердца, в результате ослабления или повреждения стенки сосуда. Стенокардия: также называется стенокардией. Он характеризуется сильной болью в сундуке, обычно «затягивающим» типом, часто представляет облучение левой руки и плеча, вызванное почти всегда уменьшением потока крови, который орошает сердце.

Гладко-мышечные клетки

Образуют среднюю оболочку, соединены друг с другом и с эластическими и коллагеновымн волокнами, создают активное напряжение сосудистой стенки (сосудистый тонус)

Адвентиция

Является наружной оболочкой сосуда и состоит из рыхлой соединительной ткани (коллагеновых волокон), фибробластов. тучных клеток, нервных окончаний, а в крупных сосудах дополнительно включает мелкие кровеносные и лимфатические капилляры, в зависимости от типа сосудов имеет различную толщину, плотность и проницаемость

Анти-агрегат тромбоцитов: препарат, который действует, уменьшая способность агрегации тромбоцитов и, следовательно, уменьшая свертываемость крови. Аорта: Большая артерия, которая поднимается из левого желудочка сердца и переносит артериальную кровь для обеспечения всего человеческого тела.

Аортопластика: она состоит из дилатации сужения артерии аорты с использованием баллонного катетера или имплантата протеза. Ангиокардиография: визуализация просвета сосудов и кардиальных полостей с использованием радиологического контраста, обычно основанного на йоде. Таким образом, можно анализировать наличие или отсутствие врожденных пороков сердца, поражений сердечного клапана и сократительной функции сердечной мышцы.

Функциональная классификация и виды сосудов

Деятельность сердца и сосудов обеспечивает непрерывное движение крови в организме, перераспределение ее между органами в зависимости от их функционального состояния. В сосудах создается разность давления крови; давление в крупных артериях значительно превышает давление в мелких артериях. Разность давления и обусловливает движение крови: кровь течет из тех сосудов, где давление более высокое, в те сосуды, где давление низкое, от артерий к капиллярам, венам, от вен к сердцу.

Ангиография: визуализация просвета сосуда при введении радиологического контраста. Ангиопластика: нехирургическая техника для лечения артериальных заболеваний. Он состоит из временного раздувания баллонного катетера в сосуд для коррекции сужения. Коронарная транслюминальная ангиопластика: это нехирургическая техника для очистки коронарных артерий в отдельных случаях. Он выполняется с использованием катетера с надувным воздушным шаром на его конце, который размещен на уровне поражения, внутри коронарной артерии.

Затем баллон надувается путем сжатия атеросклеротической бляшки к стенке сосуда, увеличивая свет сосуда, улучшая прохождение крови к сердечной мышце. Сердечная аритмия: аномалия или нарушение сердечного ритма. Существует несколько типов сердечной аритмии.

В зависимости от выполняемой функции сосуды большого и малого подразделяются на несколько групп:

  • амортизирующие (сосуды эластического типа);
  • резистивные (сосуды сопротивления);
  • сосуды-сфинктеры;
  • обменные сосуды;
  • емкостные сосуды;
  • шунтирующие сосуды (артериовенозные анастомозы).

Артерии: Это сосуды, несущие кровь от сердца ко всему человеческому телу. Коронарные артерии: это сосуды, которые питают сердце кровью, богатой кислородом и питательными веществами. Артериография: Окрашивание с использованием контраста любой артерии человеческого тела.

Селективная артериография: выборочное помутнение артерии с использованием катетера для контраста. Артериолы: небольшие артериальные ветви, которые регулируют устойчивость к кровотоку. Структурно их стены богаты мышечными волокнами и также известны как сосуды сопротивления, потому что, когда они сокращаются, они повышают кровяное давление в крови.

Амортизирующие сосуды (магистральные, сосуды компрессионной камеры) — аорта, легочная артерия и все отходящие от них крупные артерии, артериальные сосуды эластического типа. Эти сосуды принимают кровь, изгоняемую желудочками под относительно высоким давлением (около 120 мм рт. ст. для левого и до 30 мм рт. ст. для правого желудочков). Эластичность магистральных сосудов создастся хорошо выраженным в них слоем эластических волокон, располагающихся между слоями эндотелия и мышц. Амортизирующие сосуды растягиваются, принимая кровь, изгоняемую под давлением желудочками. Это смягчает гидродинамический удар выбрасываемой крови о стенки сосудов, а их эластические волокна запасают потенциальную энергию, которая расходуется на поддержание артериального давления и продвижение крови на периферию во время диастолы желудочков сердца. Амортизирующие сосуды оказывают небольшое сопротивление кровотоку.

Атерома: Жировые отложения, кальцинированные или нет, что вызывает сужение кровеносного сосуда. Также известен как атеромальная пластинка или атеросклеротическая пластинка. Септостомия предсердий: метод, при котором маленький баллонный катетер используется для содействия открытию межпредсердной перегородки, путем направления катетера из левого предсердия вправо. Он используется у новорожденных с кардиопатией с некоторыми типами очень серьезных врожденных пороков сердца, при которых лучшее улучшение артериальной и венозной крови необходимо для поддержания жизни, ожидая лучшего времени для восстановления операции на сердце.

Резистивные сосуды (сосуды сопротивления) — мелкие артерии, артериолы и метартериолы. Эти сосуды оказывают наибольшее сопротивление кровотоку, так как имеют малый диаметр и содержат в стенке толстый слой циркулярно расположенных гладкомышечных клеток. Гладкомышечные клетки, сокращающиеся под действием нейромедиаторов, гормонов и других сосудоактивных веществ, могут резко уменьшать просвет сосудов, увеличивать сопротивление току крови и снижать кровоток в органах или их отдельных участках. При расслаблении гладких миоцитов просвет сосудов и кровоток возрастают. Таким образом, резистивные сосуды выполняют функцию регуляции органного кровотока и влияют на величину артериального давления крови.

Капилляры: микроскопические кровеносные сосуды, расположенные между артериолами и венулами, между артериями и венами, которые распределяют кислородсодержащую кровь в ткани организма. Кардиология: Это исследование сердца. Это медицинская специальность, которая предотвращает и лечит сердечные заболевания.

Система кровообращения: система, состоящая из сердца, кровеносных сосудов и кровообращения. Электрическая кардиоверсия: метод, при котором удар электрическим током к сундуку применяется, чтобы вернуть ненормальность сердцебиения, используя устройство, называемое кардиовертером.

Обменные сосуды — капилляры, а также пре- и посткапиллярные сосуды, через которые совершается обмен водой, газами и органическими веществами между кровью и тканями. Стенка капилляров состоит из одного слоя эндотелиальных клеток и базальной мембраны. В стенке капилляров нет мышечных клеток, которые могли бы активно изменить их диаметр и сопротивление кровотоку. Поэтому число открытых капилляров, их просвет, скорость капиллярного кровотока и транскапиллярный обмен изменяются пассивно и зависят от состояния перицитов — гладкомышечных клеток, расположенных циркулярно вокруг прекапиллярных сосудов, и состояния артериол. При расширении артериол и расслаблении перицитов капиллярный кровоток возрастает, а при сужении артериол и сокращении перицитов замедляется. Замедление тока крови в капиллярах наблюдается также при сужении венул.

Катетеризация сердца: метод, в котором прорезают или рассекают вену или периферическую артерию, и тонкую гибкую трубку, называемую катетером, вставляют в крупные сосуды и сердце для анализа физиологических, функциональных и анатомических данных. Несмотря на историю, физическое обследование, электрокардиограмму, рентгенологию грудной клетки, физические упражнения, ядерную медицину, эхокардиограмму и т.д. дают значительные данные о сердечной функции и патофизиологии, катетеризация сердца может помочь в получении ряда дополнительных данных, которые будут способствовать точной диагностике и, следовательно, указанию на наиболее подходящее лечение.

Емкостные сосуды представлены венами. Благодаря высокой растяжимости вены могут вмещать большие объемы крови и таким образом обеспечивают се своеобразное депонирование — замедление возврата к предсердиям. Особенно выраженными депонирующими свойствами обладают вены селезенки, печени, кожи и легких. Поперечный просвет вен в условиях низкого кровяного давления имеет овальную форму. Поэтому при увеличении притока крови вены, даже не растягиваясь, а лишь принимая более округлую форму, могут вмещать больше крови (депонировать ее). В стенках вен имеется выраженный мышечный слой, состоящий из циркулярно расположенных гладкомышечных клеток. При их сокращении диаметр вен уменьшается, количество депонированной крови снижается и увеличивается возврат крови к сердцу. Таким образом, вены участвуют в регуляции объема крови, возвращающегося к сердцу, влияя на его сокращения.

Диагностика сердечной катетеризации: когда процедура направлена ​​только на диагностику и количественную оценку повреждений, когда они присутствуют. Катетеризация сердца. Правильно: при использовании влага или ножки, катетер переходит в верхнюю или нижнюю полой веной, правое предсердие, правый желудочек, туловище и ветви легочной артерии, а дистальный слой легочной циркуляции для записи давления.

Лечение катетеризации левого сердца: метод, в котором используется периферическая артерия, и катетер развивается под прямым зрением к корню аорты и полости левого желудочка. Терапевтическая катетеризация сердца: когда процедура предназначена для лечения коронарного поражения или некоторых сердечных дефектов.

Шунтирующие сосуды — это анастомозы между артериальными и венозными сосудами. В стенке анастомозирующих сосудов имеется мышечный слой. При расслаблении гладких миоцитов этого слоя происходит открытие анастомозирующего сосуда и снижение в нем сопротивления кровотоку. Артериальная кровь по градиенту давления сбрасывается через анастомозирующий сосуд в вену, а кровоток через сосуды микроциркуляторного русла, включая капилляры, уменьшается (вплоть до прекращения). Это может сопровождаться снижением локального тока крови через орган или его часть и нарушением тканевого обмена. Особенно много шунтирующих сосудов в коже, где артериовенозные анастомозы включаются для снижения отдачи тепла, при угрозе снижения температуры тела.

Цианоз: синеватая тональность, которая при определенных условиях принимает кожу и слизистые оболочки, как правило, из-за увеличения гемоглобина в циркулирующей крови. Он встречается у новорожденных с врожденными пороками сердца. Реже присутствует присутствие других пигментов.

Коронарная ангиография: визуализация анатомии и света коронарных артерий с использованием радиологического контраста. Коллатеральная циркуляция: тонкая сеть сосудов, которая образуется вблизи места обструкции более крупного судна, в попытке организма поддерживать кровоток на дистальный дистальный слой.

Сосуды возврата крови в сердце представлены средними, крупными и полыми венами.

Таблица 1. Характеристика архитектоники и гемодинамики сосудистого русла

Артерии и вены человека выполняют разную работу в организме. В связи с этим можно наблюдать существенные различия в морфологии и условиях прохождения крови, хотя общее строение, за редким исключением, у всех сосудов единое. Их стенки имеют три слоя: внутренний, средний, наружный.

Контраст: Инъекционное вещество, используемое для визуализации кровеносных сосудов и кардиальных структур. Существует несколько контрастных веществ. Наиболее используемые производятся с йодом. Коронар: имя, данное артериям, которые орошают сердечную мышцу.

Сердечный выход: объем крови, который перекачивается сердцем в систему кровообращения, в минуту. Дефибриллятор: аппарат, используемый для запуска «шока», способного изменить сердечную аритмию, такую ​​как фибрилляция предсердий или желудочков в нормальном сердечном ритме.

Эндартерэктомия: хирургическое удаление зубного налета, лежащего в просвете артерии. Эндокард: Мембрана, которая выстилает внутреннюю поверхность сердца. Эндотелий: мембрана, которая выстилает внутреннюю поверхность кровеносных сосудов. Эпикард: Мембрана, которая выстилает наружную поверхность сердечной мышцы.

Внутренняя оболочка, называющаяся интимой, в обязательном порядке имеет 2 слоя:

  • эндотелий, выстилающий внутреннюю поверхность, представляет собой слой клеток плоского эпителия;
  • субэндотелий – находится под эндотелием, состоит из соединительной ткани с рыхлой структурой.

Среднюю оболочку составляют миоциты, эластические и коллагеновые волокна.

Наружная оболочка, носящая название «адвентиция», – это волокнистая соединительная ткань с рыхлой структурой, снабженная сосудами сосудов, нервами, лимфатическими сосудами.

Артерии

Это кровеносные сосуды, по которым кровь переносится от сердца ко всем органам и тканям. Различают артериолы и артерии (мелкие, средние, крупные). Их стенки имеют три слоя: интиму, медиа и адвентицию. Классифицируют артерии по нескольким признакам.

По строению среднего слоя различают три типа артерий:

  • Эластические . У них средний слой стенки состоит из эластических волокон, способных выдерживать высокое давление крови, развивающееся при ее выбросе. К этому виду относится легочный ствол и аорта.
  • Смешанные (мышечно-эластические). Средний слой состоит из разного количества миоцитов и эластических волокон. К ним относится сонная, подключичная, подвздошная.
  • Мышечные . У них средний слой представлен отдельными миоцитами, расположенными циркулярно.

По расположению относительно органов артерии делят на три типа:

  • Магистральные – снабжают кровью части тела.
  • Органные – несут кровь в органы.
  • Внутриорганные – имеют разветвления внутри органов.

Вены

Они бывают безмышечными и мышечными.

Стенки безмышечных вен состоят из эндотелия и соединительной тканью рыхлой структуры. Такие сосуды находятся в костной ткани, плаценте, головном мозге, сетчатке глаза, селезенке.

Мышечные вены в свою очередь разделяют на три вида в зависимости от того, как развиты миоциты:

  • слабо развиты (шея, лицо, верхняя часть тела);
  • средне (плечевая и мелкие вены);
  • сильно (нижняя часть тела и ноги).

По венам, кроме пупочной и легочной, переносится кровь, которая отдала кислород и питательные вещества и забрала углекислый газ и продукты распада в результате обменных процессов. Она движется от органов к сердцу. Чаще всего ей приходится преодолевать силу тяжести и скорость ее меньше, что связано с особенностями гемодинамики (более низким давлением в сосудах, отсутствием его резкого перепада, малым количеством кислорода в крови).

Строение и его особенности:

  • Больше в диаметре по сравнению с артериями.
  • Слабо развит подэндотелиальный слой и эластический компонент.
  • Стенки тонкие и легко опадают.
  • Гладкомышечные элементы среднего слоя развиты довольно слабо.
  • Выраженный наружный слой.
  • Наличие клапанного аппарата, который образован внутренним слоем стенки вены. Основание клапанов состоит из гладких миоцитов, внутри створок – волокнистая соединительная ткань, снаружи их покрывает слой эндотелия.
  • Все оболочки стенки наделены сосудами сосудов.

Баланс между венозной и артериальной кровью обеспечивается несколькими факторами:

  • большим количеством вен;
  • более крупным их калибром;
  • густотой сети вен;
  • образованием венозных сплетений.

Отличия

Чем артерии отличаются от вен? Эти кровеносные сосуды имеют существенные различия по многим признакам.

Артерии и вены, в первую очередь, различаются по строению стенки

По строению стенки

У артерий толстые стенки, в них много эластических волокон, гладкая мускулатура хорошо развита, они не опадают, если не наполнены кровью. За счет сократительной способности тканей, из которой состоят их стенки, осуществляется быстрая доставка крови, насыщенной кислородом, ко всем органам. Клетки, из которых состоят слои стенок, обеспечивают беспрепятственное прохождение крови по артериям. Внутренняя поверхность у них гофрированная. Артерии должны выдерживать высокое давление, которое создается при мощных выбросах крови.

Давление в венах низкое, поэтому стенки тоньше. Они опадают при отсутствии в них крови. Их мышечный слой не способен сокращаться так, как у артерий. Поверхность внутри сосуда гладкая. Кровь по ним движется медленно.

В венах самой толстой оболочкой считается наружная, в артериях – средняя. У вен отсутствуют эластические мембраны, у артерий есть внутренняя и наружная.

По форме

Артерии имеют довольно правильную цилиндрическую форму, они круглые в сечении.

Вены из-за давления других органов уплощены, их форма извилистая, они то сужаются, то расширяются, что связано с расположением клапанов.

По количеству

В организме человека вен больше, артерий меньше. Большинство средних артерий сопровождаются парой вен.

По наличию клапанов

В большинстве вен есть клапаны, не дающие крови течь в обратную сторону. Они расположены парами напротив друг друга на всем протяжении сосуда. Их нет в воротных полых, плечеголовых, подвздошных венах, а также в венах сердца, головного и красного костного мозга.

В артериях клапаны находятся при выходе сосудов из сердца.

По объему крови

В венах циркулирует крови приблизительно в два раза больше, чем в артериях.

По расположению

Артерии залегают глубоко в тканях и подходят к коже лишь в нескольких местах, там, где прослушивается пульс: на висках, шее, запястье, подъеме стоп. Их расположение у всех людей примерно одинаковое.

Вены в большинстве своем расположены близко к поверхности кожи

Локализация вен у разных людей может отличаться.

По обеспечению движения крови

В артериях кровь течет под давлением силы сердца, которое ее выталкивает. Сначала скорость составляет около 40 м/с, затем постепенно уменьшается.

Кровоток в венах происходит за счет нескольких факторов:

  • силы давления, зависящего от толчка крови со стороны сердечной мышцы и артерий;
  • присасывающей силы сердца при расслаблении между сокращениями, то есть создание в венах отрицательного давления из-за расширения предсердий;
  • присасывающего действия на вены груди дыхательных движений;
  • сокращения мышц ног и рук.

Кроме этого, примерно треть крови находится в венозных депо (в воротной вене, селезенке, коже, стенках желудка и кишечника). Она выталкивается оттуда, если нужно увеличить объем циркулирующей крови, например, при массивных кровотечениях, при высоких физических нагрузках.

По цвету и составу крови

По артериям кровь доставляется от сердца к органам. Она обогащена кислородом и имеет алый цвет.

Вены обеспечивают отток крови от тканей к сердцу. Венозная кровь, в которой находится углекислый газ и продукты распада, образовавшиеся при обменных процессах, отличается более темным цветом.

Артериальное и имеют разные признаки. В первом случае, кровь выбрасывается фонтаном, во втором – течет струей. Артериальное – более интенсивное и опасное для человека.

Таким образом, можно выделить главные отличия:

  • Артерии осуществляют транспортировку крови от сердца к органам, вены – обратно к сердцу. Артериальная кровь несет кислород, венозная возвращает углекислый газ.
  • Стенки артерий более эластичные и толстые, чем венозные. В артериях кровь выталкивается с силой и движется под давлением, в венах течет спокойно, при этом двигаться в обратном направлении ей не дают клапаны.
  • Артерий меньше, чем вен в 2 раза, и находятся они глубоко. Вены расположены в большинстве случаев поверхностно, их сеть более широкая.

Вены, в отличие от артерий, используются в медицине для получения материала на анализ и для введения лекарственных препаратов и других жидкостей непосредственно в кровоток.

yukan.ru

Строение сосудистой стенки

Стенка кровеносного сосуда состоит из нескольких слоев: внутреннего (tunica intima), содержащего эндотелий, подэндотелиальный слой и внутреннюю эластическую мембрану; среднего (tunica media), образованного гладкомышечными клетками и эластическими волокнами; наружного (tunica externa), представленного рыхлой соединительной тканью, в которой находятся нервные сплетения и vasa vasorum. Стенка кровеносного сосуда получает питание за счет ветвей, отходящих от главного ствола этой же артерии или рядом лежащей другой артерии. Эти ветви проникают в стенку артерии или вены через наружную оболочку, образуя в ней сплетение артерий, поэтому они получили название «сосуды сосудов» (vasa vasorum).

Кровеносные сосуды, направляющиеся к сердцу, принято называть венами, а отходящие от сердца — артериями, независимо от состава крови, которая протекает по ним. Артерии и вены отличаются особенностями внешнего и внутреннего строения. 1.       Различают следующие типы строения артерий: эластический, эластическо-мышечный и мышечно-эластический.

К артериям эластического типа относятся аорта, плечеголовной ствол, подключичная, общая и внутренняя сонная артерии, общая подвздошная артерия. В среднем слое стенки преобладают над коллагеновыми эластические волокна, лежащие в виде сложной сети, образующей мембраны. Внутренняя оболочка сосуда эластического типа более толстая, чем у артерии мышечно-эластического типа. Стенка сосудов эластического типа состоит из эндотелия, фибробластов, коллагеновых, эластических, аргирофильных и мышечных волокон. В наружной оболочке много коллагеновых соединительнотканных волокон.

Для артерий эластическо-мышечного и мышечно-эластического типов (верхние и нижние конечности, экстраорганные артерии) характерно наличие в их среднем слое эластических и мышечных волокон. Мышечные и эластические волокна переплетаются в виде спиралей по всей длине сосуда.

2.       Мышечный тип строения имеют внутриорганные артерии, артериолы и венулы. Их средняя оболочка образована мышечными волокнами (рис. 362). На границе каждого слоя сосудистой стенки имеются эластические мембраны. Внутренняя оболочка в области разветвления артерий утолщается в виде подушечек, которые противостоят вихревым ударам потока крови. При сокращении мышечного слоя сосудов совершается регуляция кровотока, что ведет к нарастанию сопротивления и повышению кровяного давления. При этом возникают условия, когда кровь направляется в другое русло, где давление ниже вследствие расслабления сосудистой стенки, или поток крови сбрасывается по артериоловенулярным анастомозам в венозную систему. В организме постоянно происходит перераспределение крови, и в первую очередь она направляется к более нуждающимся органам. Например, при сокращении, т. е. работе, поперечнополосатых мышц кровоснабжение их увеличивается в 30 раз. Зато в других органах компенсаторно наступает замедление кровотока и уменьшение кровоснабжения.

362. Гистологический срез артерии эластическо-мышечного типа и вены. 1 — внутренний слой вены; 2 — средний слой вены; 3 — наружный слой вены; 4 — наружный (адвентициальный) слой артерии; 5 — средний слой артерии; 6 — внутренний слой артерии.

363. Клапаны в бедренной вене. Стрелка показывает направление тока крови (по Sthor).

1 — стенка вены; 2 — створка клапана; 3 — пазуха клапана.

3. Вены по строению отличаются от артерий, что зависит от низкого давления крови. Стенка вен (нижняя и верхняя полые вены, все экстраорганные вены) состоит из трех слоев (рис. 362). Внутренний слой хорошо развит я содержит, помимо эндотелия, мышечные и эластические волокна. Во многих венах встречаются клапаны (рис. 363), имеющие соединительнотканную створку и в основании клапана — валикообразное утолщение из мышечных волокон. Средний слой вен более толстый и состоит из спиральных мышечных, эластических и коллагеновых волокон. В венах отсутствует наружная эластическая мембрана. В местах слияния вен и дистальнее клапанов, выполняющих роль сфинктеров, мышечные пучки образуют циркулярные утолщения. Наружная оболочка состоит из рыхлой соединительной и жировой ткани, содержит более густую сеть околососудистых сосудов (vasa vasorum), чем артериальная стенка. Многие вены имеют паравенозное русло за счет хорошо развитого околососудистого сплетения (рис. 364).

364. Схематическое изображение сосудистого пучка, представляющего замкнутую систему, где пульсовая волна способствует движению венозной крови.

В стенке венул выявляются мышечные клетки, выполняющие роль сфинктеров, функционирующих под контролем гуморальных факторов (серотонин, катехоламин, гистамин и др.). Внутриорганные вены окружены соединительнотканным футляром, находящимся между стенкой вены и паренхимой органа. Часто в этой соединительнотканной прослойке располагаются сети лимфатических капилляров, например в печени, почках, яичке и других органах. В полостных органах (сердце, матка, мочевой пузырь, желудок и др.) гладкие мышцы их стенок вплетаются в стенку вены. Ненаполненные кровью вены спадаются из-за отсутствия в их стенке упругого эластического каркаса.

4. Кровеносные капилляры имеют диаметр 5—13 мкм, но встречаются органы и с широкими капиллярами (30—70 мкм), например в печени, передней доле гипофиза; еще более широкие капилляры в селезенке, клиторе и половом члене. Стенка капилляра тонка и состоит из слоя эндотелиальных клеток и базальной мембраны. С внешней стороны кровеносный капилляр окружен перицитами (клетки соединительной ткани). В стенке капилляра отсутствуют мышечные и нервные элементы, поэтому регуляция кровотока по капиллярам полностью находится под контролем мышечных сфинктеров артериол и венул (это их отличает от капилляров), а деятельность регулируется симпатической нервной системой и гуморальными факторами.

В капиллярах кровь течет постоянной струей без пульсирующих толчков со скоростью 0,04 см/с под давлением 15—30 мм рт. ст.

Капилляры в органах, анастомозируя друг с другом, образуют сети. Форма сетей зависит от конструкции органов. В плоских органах — фасции, брюшине, слизистых оболочках, конъюнктиве глаза — формируются плоские сети (рис. 365), в трехмерных — печень и другие железы, легкие — имеются трехмерные сети (рис. 366).

365. Однослойная сеть кровеносных капилляров слизистой оболочки мочевого пузыря.

366. Сеть кровеносных капилляров альвеол легкого.

Число капилляров в организме огромно и их суммарный просвет превосходит диаметр аорты в 600— 800 раз. 1 мл крови разливается по капиллярной площади 0,5 м2.

www.medical-enc.ru

16_Serdechno-sosudstaya_sistema

Тема: Сердечно-сосудистая система. Кровеносные сосуды. Общий план строения. Разновидности. Зависимость строения стенки сосудов от гемодинамических условий. Артерии. Вены. Классификация. Особенности строения. Функции. Возрастные особенности.

Сердечно – сосудистая система включает сердце, кровеносные и лимфатические сосуды. При этом сердце, кровеносные и лимфатические сосуды называются системой кровообращения или кровеносной системой. Лимфатические сосуды вместе с лимфатическими узлами относятся к лимфатической системе.

Кровеносная система – это замкнутая система трубок разного калибра, выполняющая транспортную, трофическую, обменную функцию и функцию регуляции микроциркуляции крови в органах и тканях.

Развитие сосудов

Источником развития кровеносных сосудов является мезенхима. На третьей неделе эмбрионального развития вне организма зародыша в стенке желточного мешка и в хорионе (у млекопитающих) образуются скопления клеток мезенхимы – кровяные островки. Периферические клетки островков формируют стенки сосудов, а центрально расположенные мезенхимоциты дифференцируются в первичные клетки крови. Позднее таким же образом сосуды появляются в теле зародыша и устанавливается сообщение между первичными кровеносными сосудами внезародышевых органов и тела зародыша. Дальнейшее развитие сосудистой стенки и приобретение различных особенностей строения происходит под влиянием гемодинамических условий к которым относятся: давление крови, величина его скачков, скорость кровотока.

Классификация сосудов

Кровеносные сосуды подразделяются на артерии, вены и сосуды микроциркуляторного русла, к которым относятся артериолы, капилляры, венулы и артериоло-венулярные анастомозы.

Общий план строения стенки кровеносных сосудов

За исключением капилляров и некоторых вен, кровеносные сосуды имеют общий план строения, все они состоят из трех оболочек:

  1. Внутренняя оболочка (интима) состоит из двух обязательных слоев

- эндотелия – непреывного слоя клеток однослойного плоского эпителия, лежащих на базальной мембране и выстилающих внутреннюю поверхность сосуда;

- подэндотелиального слоя (субэндотелий), образованного рыхлой волокнистой соединительной тканью.

  1. Средняя оболочка в составе которой обычно присутствуют гладкие миоциты и образуемое этими клетками межклеточное вещество, представленное протеогликанами, гликопротеинами, коллагеновые и эластические волокна.

  2. Наружная оболочка (адвентиция) представлена рыхлой волокнистой соединительной тканью, с находящимися в ней сосудами сосудов, лимфатическими капиллярами и нервами.

Артерии – это сосуды, обеспечивающие продвижение крови от сердца к микроциркуляторному руслу в органах и тканях. По артериям течет артериальная кровь, за исключением легочной и пупочной артерий.

Классификация артерий

По количественному соотношению эластических и мышечных элементов в стенке сосуда, артерии подразделяются на:

  1. Артерии эластического типа.

  2. Артерии смешанного типа (мышечно- эластического) типа.

  3. Артерии мышечного типа.

Строение артерий эластического типа

К артериям данного типа относятся аорта и легочная артерия. Стенка данных сосудов подвержена большим перепадам давления, поэтому им требуется высокая эластичность.

1. Внутренняя оболочка состоит из трех слоев:

- слой эндотелия

- подэндотелиальный слой, имеющий значительную толщину, т.к. он амортизирует скачки давления. Представлен рыхлой волокнистой соединительной тканью. В пожилом возрасте здесь появляются холестерин и жирные кислоты.

- сплетение эластических волокон, представляет собой густое переплетение продольно и циркулярно расположенных эластических волокон

2. Средняя оболочка представлена 50-70 окончатыми эластическими мембранами, которые имеют вид цилиндров, вставленных друг в друга, между которыми имеются отдельные гладкие миоциты, эластические и коллагеновые волокна.

3. Наружная оболочка представлена рыхлой волокнистой соединительной тканью с кровеносными сосудами, питающими стенку артерии (сосуды сосудов) и нервами.

Строение артерий смешанного (мышечно – эластического) типа

К артериям данного типа относятся подключичная, сонная и подвздошная артерии).

1. Внутренняя оболочка состоит из трех слоев:

- эндотелий

- подэндотелиальный слой

- внутренняя эластическая мембрана

2. Средняя оболочка состоит из примерно равного количества эластических элементов (к которым относятся волокна и эластические мембраны) и гладких миоцитов.

3. Наружная оболочка состоит из рыхлой соединительной ткани, где наряду с сосудами и нервами, находятся продольно расположенные пучки гладких миоцитов.

Строение артерий мышечного типа

Это все остальные артерии среднего и малого калибра.

1. Внутренняя оболочка состоит из

- эндотелия

- подэндотелиального слоя

- внутренней эластической мембраны

2. Средняя оболочка имеет наибольшую толщину, представлена в основном спирально расположенными пучками гладких мышечных клеток, между которыми располагаются коллагеновые и эластические волокна.

Между средней и наружной оболочками артерии находится слабо выраженная наружная эластическая мембрана.

3.Наружная оболочка представлена рыхлой волокнистой соедини тельной тканью с сосудами и нервами, гладких миоцитов нет.

Вены – это сосуды, несущие кровь к сердцу. По ним течет венозная кровь, за исключением легочной и пупочной вен.

В связи с особенностями гемодинамики, к которым относится более низкое давление крови, чем в артериях, отсутствие резких перепадов давления, медленное движение крови и меньшее содержание в крови кислорода, вены имеют в своем строении ряд особенностей по строению с артериями:

  1. Вены имеют больший диаметр.

  2. Стенка их более тонкая, легко спадается.

  3. Слабо развит эластический компонент и подэндотелиальный слой.

  4. Более слабое развитие гладкомышечных элементов в средней оболочке.

  5. Хорошо выражена наружная оболочка.

  6. Наличие клапанов, которые являются производными внутренней оболочки, снаружи створки клапанов покрыты эндотелием, их толщу образует рыхлая волокнистая соединительная ткань, а в основании находятся гладкие миоциты.

  7. Сосуды сосудов содержатся во всех оболочках сосуда.

Классификация вен

2. Вены мышечного типа, которые в свою очередь подразделяются на:

- вены со слабым развитием миоцитов

- вены со средним развитием миоцитов

- вены с сильным развитием миоцитов

Степень развития миоцитов зависти от локализации вены: в верхней части тела мышечный компонент развит слабо, в нижней – сильнее.

Строение вены безмышечного типа

Располагаются вены подобного типа в головном мозге, его оболочках, сетчатке, плаценте, селезенке, костной ткани.

Стенка сосуда образована эндотелием, окруженным рыхлой волокнистой соединительной тканью, плотно срастается со стромой органов и поэтому не спадается.

Строение вен со слабым развитием миоцитов

Это вены лица, шеи, верхней части тела и верхняя полая вена.

1. Внутренняя оболочка состоит из

- эндотелия

- слабо развитого подэндотелиального слоя

2. В средней оболочке слабо развитые циркулярно расположенные пучки гладкомышечных клеток, между которыми располагаются значительной толщины прослойки рыхлой соединительной ткани.

3. Наружная оболочка представлена рыхлой волокнистой соединительной тканью.

Строение вен со средним развитием миоцитов

К ним относятся плечевая вена и мелкие вены организма.

1. Внутренняя оболочка состоит из:

- эндотелия

- подэндотелиального слоя

2. Средняя оболочка включает несколько слоев циркулярно расположенных миоцитов.

3. Наружная оболочка толстая, содержит в рыхлой волокнистой соединительной ткани продольно расположенные пучки гладких миоцитов.

Строение вен с сильным развитием миоцитов

Располагаются такие вены в нижней части тела и нижних конечностях. Помимо хорошего развития миоцитов во всех слоях стенки характеризуются наличием клапанов, обеспечивающих движение крови в сторону сердца.

Регенерация кровеносных сосудов

При повреждении стенки сосуда быстро делящиеся эндотелиоциты закрывают дефект. Образование гладких миоцитов происходит медленно за счет их деления и дифференцировки миобластов и перицитов. При полном разрыве средних и крупных сосудов их восстановление без оперативного вмешательства невозможно, но дистальнее разрыва кровоснабжение восстанавливается за счет коллатералей и образования мелких сосудов из выпячиваний эндотелиоцитов стенок артериол и венул.

Возрастные особенности кровеносных сосудов

Соотношение между диаметром артерий и вен к моменту рождения ребенка 1:1, у стариков эти отношения изменяются до 1:5. У новорожденного все кровеносные сосуды имеют тонкие стенки, их мышечная ткань и эластические волокна развиты слабо. В первые годы жизни в больших сосудах объем мышечной оболочки увеличивается и нарастает количество эластических и коллагеновых волокон сосудистой стенки. Сравнительно быстро развивается интима и ее подэндотелиальный слой. Просвет сосудов нарастает медленно. Полное формирование стенки всех кровеносных сосудов завершается к 12 годам. При наступлении 40- летнего возраста начинается обратное развитие артерий, при этом в стенке артерий разрушаются эластические волокна, гладкие миоциты, разрастаются коллагеновые волокна, субэндотелий резко утолщается, стенка сосудов уплотняется, в ней откладываются соли, развивается склероз. Возрастные изменения вен аналогичны, но появляются раньше.

studfiles.net

2.3. Виды кровеносных сосудов и строение их стенок

118 :: 119 :: 120 :: 121 :: 122 :: 123 :: 124 :: 125 :: Содержание

Крупные сосуды – аорта, легочный ствол, полые и легочные вены – служат преимущественно путями перемещения крови. Все остальные артерии и вены, вплоть до мелких, могут, кроме того, регулировать приток крови к органам и ее отток, так как способны под влиянием нейрогуморальных факторов изменять свой просвет.

Различают артерии трех типов: эластического, мышечного и мышечно-эластического. Стенка всех видов артерий, также как и вен, состоит из трех слоев (оболочек): внутреннего, среднего и наружного. Относительная толщина этих слоев и характер тканей, их образующих, зависят от типа артерии.

Артерии эластического типа выходят непосредственно из желудочков сердца – это аорта, легочный ствол, легочная и общая сонная артерии. В их стенках находится большое количество эластических волокон, за счет чего они обладают свойствами растяжимости и упругости. Когда кровь под давлением (120–130 мм рт.ст.) и с большой скоростью (0,5– 1,3 м/с) выталкивается из желудочков при сокращении сердца, эластические волокна в стенках артерий растягиваются. После окончания сокращения желудочков, растянутые стенки артерий сокращаются и, таким образом, поддерживают давление в сосудистой системе в течение того времени, пока желудочек снова не наполнится кровью и не произойдет его сокращение.

Внутренняя оболочка (интима) артерий эластического типа составляет примерно 20% толщины их стенки (см. Атл.). Она выстлана эндотелием, клетки которого лежат на базальной мембране. Под ним расположен слой рыхлой соединительной ткани, содержащей фибробласты, гладкие мышечные клетки и макрофаги, а также большое количество межклеточного вещества. Физикохимическое состояние последнего обусловливает проницаемость стенки сосуда и ее трофику. У пожилых людей в этом слое можно видеть отложения холестерина (атеросклеротические бляшки). Снаружи интима ограничена внутренней эластической мембраной.

В месте отхождения от сердца внутренняя оболочка образует карманообразные складки – клапаны. По ходу аорты также наблюдается складчатость интимы. Складки ориентированы продольно и имеют спиральный ход. Наличие складчатости характерно и для других видов сосудов. При этом увеличивается площадь внутренней поверхности сосуда. Толщина интимы не должна превышать определенной величины (для аорты – 0,15 мм), чтобы не препятствовать питанию среднего слоя артерий.

Средний слой оболочки артерий эластического типа образован большим количеством окончатых (фенестрированных) эластических мембран, расположенных концентрически. Их количество изменяется с возрастом. У новорожденного их около 40, у взрослого – до 70. Эти мембраны с возрастом утолщаются. Между соседними мембранами лежат мало дифференцированные гладкомышечные клетки, способные вырабатывать эластин и коллаген, а также аморфное межклеточное вещество. При атеросклерозе в среднем слое стенки таких артерий могут образовываться отложения хрящевой ткани в виде колец. Это наблюдается также при значительных нарушениях диеты.

118

Эластические мембраны в стенках артерий образуются за счет выделения аморфного эластина гладкомышечными клетками. В участках, лежащих между этими клетками, толщина эластических мембран значительно меньше. Здесь образуются фенестры (окна), через которые питательные вещества проходят к структурам сосудистой стенки. При росте сосуда эластические мембраны растягиваются, фенестры расширяются, на их краях происходит отложение вновь синтезированного эластина.

Наружная оболочка артерий эластического типа тонкая, образована рыхлой волокнистой соединительной тканью с большим количеством коллагеновых и эластических волокон, расположенных в основном продольно. Эта оболочка предохраняет сосуд от перерастяжения и разрывов. Здесь проходят нервные стволики и мелкие кровеносные сосуды (сосуды сосудов), питающие наружную оболочку и часть средней оболочки основного сосуда. Количество этих сосудов находится в прямой зависимости от толщины стенки основного сосуда.

От аорты и легочного ствола отходят многочисленные ветви, которые доставляют кровь в различные участки организма: к конечностям, внутренним органам, покровам. Так как отдельные области тела несут разную функциональную нагрузку, они нуждаются в неодинаковом количестве крови. Артерии, осуществляющие их кровоснабжение, должны обладать способностью изменять свой просвет, чтобы доставлять необходимое в данный момент количество крови к органу. В стенках таких артерий хорошо развит слой гладких мышечных клеток, которые способны сокращаться и уменьшать просвет сосуда или расслабляться, увеличивая его. Эти артерии называются артериями мышечного типа, или распределительными. Их диаметр контролируется симпатической нервной системой. К таким артериям относятся позвоночная, плечевая, лучевая, подколенная, артерии мозга и другие. Их стенка также состоит из трех слоев (см. Атл.). В состав внутреннего слоя входят эндотелий, выстилающий просвет артерии, субэндотелиальная рыхлая соединительная ткань и внутренняя эластическая мембрана. В соединительной ткани хорошо развиты коллагеновые и эластические волокна, расположенные продольно, и аморфное вещество. Клетки слабо дифференцированы. Слой соединительной ткани лучше развит в артериях крупного и среднего калибра и слабее – в мелких. Снаружи от рыхлой соединительной ткани расположена тесно с ней связанная внутренняя эластическая мембрана. Она более выражена в крупных артериях.

Средняя оболочка артерии мышечного типа образована спирально расположенными гладкомышечными клетками. Сокращение этих клеток приводит к уменьшению объема сосуда и проталкиванию крови в более дистальные отделы. Мышечные клетки соединены межклеточным веществом с большим количеством эластических волокон. Наружной границей средней оболочки является наружная эластическая мембрана. Эластические волокна, расположенные между мышечными клетками, связаны с внутренней и наружной мембранами. Они образуют своеобразный эластический каркас, придающий упругость стенке артерии и предотвращающий ее спадание. Гладкомышечные клетки средней оболочки при сокращении и расслаблении регулируют просвет сосуда, а следовательно приток крови в сосуды микроциркуляторного русла органа.

Наружная оболочка образована рыхлой соединительной тканью с большим количеством эластических и коллагеновых волокон, расположенных косо или продольно. В этом слое лежат нервы и кровеносные и лимфатические сосуды, питающие стенку артерий.

119

Артерии смешанного, или мышечно-эластического типа по строению и функциональным особенностям занимают промежуточное положение между эластическими и мышечными артериями. К ним относятся, например, подключичная, наружная и внутренняя подвздошная, бедренная, брыжеечные артерии, чревный ствол. В среднем слое их стенки наряду с гладкомышечными клетками присутствует значительное количество эластических волокон и фенестрированных мембран. В глубокой части наружной оболочки таких артерий расположены пучки гладкомышечных клеток. Снаружи их покрывает соединительная ткань с хорошо развитыми пучками коллагеновых волокон, лежащих косо и продольно. Эти артерии обладают высокой эластичностью и могут сильно сокращаться.

По мере приближения к артериолам просвет артерий уменьшается, а их стенка истончается. Во внутренней оболочке уменьшается толщина соединительной ткани и внутренней эластической мембраны, в средней убывает число гладкомышечных клеток, исчезает наружная эластическая мембрана. Уменьшается толщина наружной оболочки.

Артериолы, капилляры и венулы, а также артериоло-венулярные анастомозы образуют микроциркуляторное русло (см. Атл.). Функционально выделяют приносящие микрососуды (артериолы), обменные (капилляры) и отводящие (венулы). Было установлено, что системы микроциркуляции различных органов существенно отличаются друг от друга: их организация тесно связана с функциональными особенностями органов и тканей.

Артериолы представляют собой мелкие, до 100 мкм в диаметре, кровеносные сосуды, являющиеся продолжением артерий. Они постепенно переходят в капилляры. Стенку артериол образуют те же три слоя, что и стенку артерий, однако выражены они очень слабо. Внутренняя оболочка состоит из эндотелия, лежащего на базальной мембране, тонкой прослойки рыхлой соединительной ткани и тонкой внутренней эластической мембраны. Среднюю оболочку образуют 1–2 слоя гладкомышечных клеток, расположенных спирально. В терминальных прекапиллярных артериолах, гладкомышечные клетки лежат поодиночке, они обязательно присутствуют в местах разделения артериол на капилляры. Эти клетки кольцом окружают артериолу и выполняют функцию прекапиллярного сфинктера (от греч. sphinkter – обруч). Кроме того, для терминальных артериол характерно наличие отверстий в базальной мембране эндотелия. Благодаря этому возникает контакт эндотелиоцитов с гладкомышечными клетками, которые получают возможность реагировать на вещества, попавшие в кровь. Например, при выбросе в кровь адреналина из мозгового вещества надпочечников он достигает мышечных клеток в стенках артериол и вызывает их сокращение. Просвет артериол при этом резко уменьшается, кровоток в капиллярах приостанавливается.

Капилляры – это наиболее тонкие кровеносные сосуды, которые составляют самую протяженную часть кровеносной системы и соединяют артериальное и венозное русла. Образуются истинные капилляры в результате ветвления прекапиллярных артериол. Они располагаются обычно в виде сетей, петель (в коже, синовиальных сумках) или сосудистых клубочков (в почках). Величина просвета капилляров, форма их сетей и скорость кровотока в них определяются органными особенностями и функциональным состоянием сосудистой системы. Наиболее узкие капилляры находятся в скелетных мышцах (4–6 мкм),

120

оболочках нервов, легких. Здесь они образуют плоские сети. В коже и слизистых оболочках просветы капилляров шире (до 11 мкм), они формируют трехмерную сеть. Таким образом, в мягких тканях диаметр капилляров больше, чем в плотных. В печени, железах внутренней секреции и кроветворных органах просветы капилляров очень широкие (20–30 мкм и более). Такие капилляры называются синусоидными или синусоидами.

Плотность капилляров неодинакова в различных органах. Наибольшее их количество на 1 мм3 обнаруживается в головном мозге и миокарде (до 2500–3000), в скелетной мышце – 300–1000, а в костной ткани еще меньше. В обычных физиологических условиях в тканях в активном состоянии находится примерно 50% капилляров. Просвет остальных капилляров значительно уменьшается, они становятся непроходимыми для клеток крови, но плазма продолжает по ним циркулировать.

Стенка капилляров образована эндотелиальными клетками, покрытыми снаружи базальной мембраной (рис. 2.9). В ее расщеплении лежат перициты – отросчатые клетки, окружающие капилляр. На этих клетках в некоторых капиллярах обнаруживаются эфферентные нервные окончания. Снаружи капилляр окружен мало дифференцированными адвентициальными клетками и соединительной тканью. Различают три основных типа капилляров: с непрерывным эндотелием (в мозге, мышцах, легких), с фенестрированным эндотелием (в почках, эндокринных органах, кишечных ворсинках) и с прерывистым эндотелием (синусоиды селезенки, печени, кроветворных органов). Капилляры с непрерывным эндотелием наиболее распространены. Клетки эндотелия в них соединены с помощью плотных межклеточных контактов. Транспорт веществ между кровью и тканевой жидкостью происходит через цитоплазму эндотелиоцитов. В капиллярах второго вида по ходу эндотелиальных клеток встречаются истонченные участки – фенестры, облегчающие транспорт веществ. В стенке капилляров третьего типа – синусоидов – промежутки между эндотелиальными

Рис. 2.9. Строение и типы капилляров:

А – капилляр с непрерывным эндотелием; Б – капилляр с фенестрированным эндотелием; В – капиляр синусоидного типа; 1 – перицит; 2 – фенестры; 3 – базальная мембрана; 4 – эндотелиальные клетки; 5 – поры

121

клетками совпадают с отверстиями в базальной мембране. Через такую стенку легко проходят не только макромолекулы, растворенные в крови или тканевой жидкости, но и сами клетки крови.

Проницаемость капилляров определяет ряд факторов: состояние окружающих тканей, давление и химический состав крови и тканевой жидкости, действие гормонов и т.д.

Различают артериальный и венозный концы капилляра. Диаметр артериального конца капилляра равен примерно величине эритроцита, а венозного – несколько больше.

От терминальной артериолы могут отходить и более крупные сосуды – метартериолы (главные каналы). Они пересекают капиллярное русло и вливаются в венулу. В их стенке, особенно в начальной части, находятся гладкомышечные клетки. От их проксимального конца отходят многочисленные истинные капилляры и имеются прекапиллярные сфинктеры. В дистальный конец метартериолы могут вливаться истинные капилляры. Эти сосуды выполняют роль локальной регуляции кровотока. Они могут также служить каналами для усиления сброса крови из артериол в венулы. Этот процесс приобретает особое значение при терморегуляции (например в подкожной ткани).

Различают три разновидности венул: посткапиллярные, собирательные и мышечные. Венозные части капилляров собираются в посткапиллярные венулы, диаметр которых достигает 8– 30 мкм. В месте перехода эндотелий образует складки, аналогичные клапанам вен, а в стенках увеличивается количество перицитов. Через стенку таких венул могут проходить плазма и форменные элементы крови. Эти венулы впадают в собирательные венулы диаметром 30–50 мкм. В их стенках появляются отдельные гладкомышечные клетки, часто не полностью окружающие просвет сосуда. Наружная оболочка четко выражена. Мышечные венулы, диаметром 50– 100 мкм, содержат 1–2 слоя гладкомышечных клеток в средней оболочке и выраженную наружную оболочку.

Число сосудов, отводящих кровь из капиллярного русла, обычно в два раза превышает количество приносящих сосудов. Между отдельными венулами образуются многочисленные анастомозы, по ходу венул можно наблюдать расширения, лакуны и синусоиды. Эти морфологические особенности венозного отдела создают предпосылки для депонирования и перераспределения крови в различных органах и тканях. Расчеты показывают, что находящаяся в кровеносной системе кровь распределяется таким образом, что в артериальной системе ее содержится до 15%, в капиллярах – 5– 12%, а в венозной системе – 70–80%.

Кровь из артериол в венулы может попадать и минуя капиллярное русло – через артериоловенулярные анастомозы (шунты). Они присутствуют почти во всех органах, их диаметр колеблется от 30 до 500 мкм. В стенке анастомозов находятся гладкомышечные клетки, благодаря которым может изменяться их диаметр. Через типичные анастомозы артериальная кровь сбрасывается в венозное русло. Атипичными анастомозами являются описанные выше метартериолы, по которым течет смешанная кровь. Анастомозы богато иннервированы, ширина их просвета регулируется тонусом гладкомышечных клеток. Анастомозы контролируют кровоток через орган и кровяное давление, стимулируют венозный отток, участвуют в мобилизации депонированной крови и регулируют переход тканевой жидкости в венозное

русло.

По мере того, как венулы сливаются в мелкие вены, перициты в их стенке

122

полностью заменяются гладкомышечными клетками. Структура вен сильно варьирует в зависимости от диаметра и локализации. Количество мышечных клеток в стенках вен зависит от того, движется ли в них кровь к сердцу под действием силы тяжести (вены головы и шеи) или против нее (вены нижних конечностей). Вены среднего калибра имеют значительно более тонкие стенки, чем соответствующие артерии, но их составляют те же три слоя (см. Атл.). Внутренняя оболочка состоит из эндотелия, внутренняя эластическая мембрана и субэндотелиальная соединительная ткань развиты слабо. Средняя, мышечная оболочка обычно развита слабо, а эластические волокна почти отсутствуют, поэтому разрезанная поперек вена, в отличие от артерии, всегда спадается. В стенках вен головного мозга и его оболочек мышечных клеток почти нет. Наружная оболочка вен самая толстая из всех трех. Она состоит преимущественно из соединительной ткани с большим количеством коллагеновых волокон. Во многих венах, особенно в нижней половине туловища, например в нижней полой вене, здесь находится большое количество гладкомышечных клеток, сокращение которых препятствует обратному току крови и проталкивает ее в сторону сердца. Так как кровь, текущая в венах, значительно обеднена кислородом и питательными веществами, в наружной оболочке имеется больше питающих сосудов, чем в одноименных артериях. Эти сосуды сосудов могут достигать внутренней оболочки вены из-за небольшого давления крови. В наружной оболочке развиты также лимфатические капилляры, по которым оттекает избыток тканевой жидкости.

По степени развития мышечной ткани в стенке вен они разделяются на вены волокнистого типа

– в них мышечная оболочка не развита (вены твердой и мягкой мозговых оболочек, сетчатки глаза, костей, селезенки, плаценты, яремные и внутренняя грудная вены) и вены мышечного типа. В венах верхней части туловища, шеи и лица, верхней полой вене кровь продвигается пассивно вследствие своей тяжести. В их средней оболочке присутствует небольшое количество мышечных элементов. В венах пищеварительного тракта мышечная оболочка развита неравномерно. Благодаря этому вены могут расширяться и выполнять функцию депонирования крови. Среди вен крупного калибра, в которых слабо развиты мышечные элементы, наиболее типична верхняя полая вена. Движение крови к сердцу по этой вене происходит благодаря силе тяжести, а также присасывающему действию грудной полости во время вдоха. Фактором, стимулирующим венозный приток к сердцу, является также отрицательное давление в полости предсердий при их диастоле.

Особым образом устроены вены нижних конечностей. Стенка этих вен, особенно поверхностных, должна противостоять гидростатическому давлению, создаваемому столбом жидкости (крови). Глубокие вены поддерживают свою структуру благодаря давлению окружающих мышц, но поверхностные вены такого давления не испытывают. В этой связи стенка последних значительно толще, в ней хорошо развит мышечный слой средней оболочки, содержащий продольно и циркулярно расположенные гладкомышечные клетки и эластические волокна. Продвижение крови по венам может происходить также за счет сокращения стенок лежащих рядом артерий (см. Атл.).

Характерной особенностью этих вен является наличие клапанов (см. Атл.). Это полулунные

складки внутренней оболочки (интимы), обычно

123

расположенные попарно у слияния двух вен. Клапаны имеют форму карманов, открытых в сторону сердца, что исключает обратный ток крови под действием силы тяжести. На поперечном срезе клапана видно, что снаружи створки его покрыты эндотелием, а основу составляет тонкая пластинка соединительной ткани. В основании створок клапанов находится небольшое количество гладкомышечных клеток. Обычно проксимальнее места прикрепления клапана вена слегка расширяется. В венах нижней половины тела, где кровь продвигается против действия силы тяжести, мышечная оболочка развита лучше и клапаны встречаются чаще. Клапанов нет в полых венах (отсюда их название), в венах почти всех внутренностей, мозга, головы, шеи и в мелких венах.

Направление вен не такое прямое, как артерий – они характеризуются извилистым ходом. Еще одной особенностью венозной системы является то, что многие артерии мелкого и среднего калибра сопровождаются двумя венами. Часто вены разветвляются и вновь соединяются друг с другом, образуя многочисленные анастомозы. Во многих местах имеются хорошо развитые венозные сплетения: в малом тазе, в позвоночном канале, вокруг мочевого пузыря. Значение этих сплетений можно проследить на примере внутрипозвоночного сплетения. При наполнении кровью оно занимает те свободные пространства, которые образуются при смещении спинномозговой жидкости при изменении положения тела или при движениях. Таким образом, строение и расположение вен зависит от физиологических условий тока крови в них.

Кровь не только течет в венах, но и резервируется в отдельных участках русла. В кровообращении участвует примерно 70 мл крови на 1 кг массы тела и еще 20–30 мл на 1 кг находятся в венозных депо: в венах селезенки (примерно 200 мл крови), в венах воротной системы печени (около 500 мл), в венозных сплетениях желудочно-кишечного тракта и кожи. Если при напряженной работе необходимо увеличить объем циркулирующей крови, она выходит из депо и вступает в общую циркуляцию. Депо крови находятся под контролем нервной системы.

Иннервация кровеносных сосудов. Стенки кровеносных сосудов богато снабжены двигательными и чувствительными нервными волокнами. Афферентные окончания воспринимают информацию о давлении крови на стенки сосудов (барорецепторы) и содержании в крови таких веществ, как кислород, углекислый газ и других (хеморецепторы). Барорецепторные нервные окончания, наиболее многочисленные в дуге аорты и в стенках крупных вен и артерий, образованы терминалями волокон, проходящих в составе блуждающего нерва. Многочисленные барорецепторы сконцентрированы в каротидном синусе, расположенном вблизи бифуркации (раздвоения) общей сонной артерии. В стенке внутренней сонной артерии находится каротидное тельце. Его клетки чувствительны к изменению концентрации кислорода и углекислого в крови, а также ее рН. На клетках образуют афферентные нервные окончания волокна языкоглоточного, блуждающего и синусного нервов. По ним информация поступает в центры ствола мозга, регулирующие деятельность сердца и сосудов. Эфферентная иннервация осуществляется волокнами верхнего симпатического ганглия.

Кровеносные сосуды туловища и конечностей иннервируются волокнами вегетативной нервной системы, в основном симпатическими, проходящими в составе спинно-мозговых нервов.

Подходя к сосудам, нервы ветвятся

124

и образуют в поверхностных слоях стенки сосуда сплетение (см. Атл.). Отходящие от него нервные волокна формируют второе, надмышечное или пограничное, сплетение на границе наружной и средней оболочек. От последнего волокна идут к средней оболочке стенки и образуют межмышечное сплетение, которое особенно выражено в стенке артерий. Отдельные нервные волокна проникают к внутреннему слою стенки. В состав сплетений входят как двигательные, так и чувствительные волокна.

125

118 :: 119 :: 120 :: 121 :: 122 :: 123 :: 124 :: 125 :: Содержание

studfiles.net

Кровеносные сосуды

Кровеносные сосуды представляют замкнутую систему разветвленных трубок разного диаметра, входящих в состав большого и малого кругов кровообращения. В этой системе различают: артерии, по которым кровь течёт от сердца к органам и тканям, вены — по ним кровь возвращается в сердце, и комплекс сосудов микроциркуляторного русла, обеспечивающих наряду с транспортной функцией обмен веществ между кровью и окружающими тканями.

Кровеносные сосуды развиваются из мезенхимы. В эмбриогенезе наиболее ранний период характеризуется появлением многочисленных клеточных скоплений мезенхимы в стенке желточного мешка — кровяных островков. Внутри островка образуются кровяные клетки и формируется полость, а расположенные по периферии клетки становятся плоскими, соединяются между собой при помощи клеточных контактов и формируют эндотелиальную выстилку образующейся трубочки. Такие первичные кровеносные трубочки по мере образования соединяются между собой и формируют капиллярную сеть. Окружающие клетки мезенхимы превращаются в перициты, гладкие мышечные клетки и адвентициальные клетки. В теле зародыша кровеносные капил­ляры закладываются из клеток мезенхимы вокруг щелевидных пространств, заполненных тканевой жидкостью. Когда по сосудам усиливается кровоток, эти клетки становятся эндотелиальными, а из окружающей мезенхимы формируются элементы средней и наружной оболочки.

Сосудистая система обладает очень большой пластичностью. Прежде всего, отмечается значительная изменчивость густоты сосудистой сети, так как в зависимости от потребностей органа в питательных веществах и кислороде в широких пределах колеблется количество приносимой ему крови. Изменение скорости кровотока и кровяного давления ведет к образованию новых сосудов и перестройке имеющихся сосудов. Происходит превращение мелкого сосуда в более крупный с характерными особенностями строения его стенки. Наибольшие изменения возникают в сосудистой системе при развитии окольного, или коллатераль­ного, кровообращения.

Артерии и вены построены по единому плану — в их стенках различают три оболочки: внутреннюю (tunica intima), среднюю (tunica media) и наружную (tunica adventicia). Однако степень развития этих оболочек, их толщина и тканевый состав тесно связаны с функцией, выполняемой сосудом и гемодинамическими условиями (высотой кровяного давления и скоростью кровотока), которые в различных отделах сосудистого русла неодинаковы.

Артерии. По строению стенок различают артерии мышеч­ного, мышечно-эластического и эластического типов.

К артериям эластического типа относятся аорта и легочная • артерия. В соответствии с высоким гидростатическим давлением (до 200 мм ртутного столба), создаваемым нагнетательной деятельностью желудочков сердца, и большой скоростью кровотока (0,5 - 1 м/с) у этих сосудов резко выражены упругие свойства, которые обеспечивают прочность стенки при ее растяжении и возвращении в исходное положение, а также способствуют превращению пульсирующего кровотока в постоянный непрерывный. Стенка артерий эластического типа отличается значительной толщиной и наличием большого количества эластических элементов в составе всех оболочек.

Внутренняя оболочка состоит из двух слоев — эндотелиального и подэндотелиального. Эндотелиальные клетки, формирующие сплошную внутреннюю выстилку, имеют различную величину и форму, содержат одно или несколько ядер. В их цитоплазме немногочисленные органеллы и много микрофиламентов. Под эндотелием находится базальная мембрана. Подэндотелиальный слой состоит из рыхлой тонковолокнистой соединительной ткани, в составе которой наряду с сетью эластических волокон присутствуют малодифференцированные клетки звездчатой формы, макрофаги, гладкие мышечные клетки. В аморфном веществе этого слоя, имеющем большое значение для питания стенки, со­держится значительное количество гликозаминогликанов. При повреждении стенки и развитии патологического процесса (атеросклерозе) в подэндотелиальном слое накапливаются липиды (холестерин и его эфиры). Клеточные элементы подэндотелиального слоя играют важную роль в регенерации стенки. На границе со средней оболочкой располагается густая сеть эластических волокон.

Средняя оболочка состоит из многочисленных эластических окончатых мембран, между которыми располагаются косо ориентированные пучки гладких мышечных клеток. Через окна (фенестры) мембран осуществляется внутристеночный транспорт веществ, необходимых для питания клеток стенки. Как мембраны, так и клетки гладкой мышечной ткани окружены сетью эластических волокон, формирующих вместе с волокнами внутренней и наружной оболочек единый каркас, обеспечивающий. высокую эластичность стенки.

Наружная оболочка образована соединительной тканью, в которой преобладают пучки коллагеновых волокон, ориентированных продольно. В этой оболочке расположены и ветвятся сосуды, обеспечивающие питание как наружной оболочки, так и наружных зон средней оболочки.

Артерии мышечного типа. К разным по калибру артериям этого типа относится большинство артерий, доставляющих и регулирующих приток крови к различным частям и органам организма (плечевая, бедренная, селезеночная и др.). При микроскопическом исследовании в стенке хорошо различимы элементы всех трех оболочек (рис. 5).

Внутренняя оболочка состоит из трех слоев: эндотелиального, подэндотелиального и внутренней эластической мембраны. Эндотелий имеет вид тонкой пластинки, состоящей из вытянутых вдоль сосуда клеток с овальными, выступающими в просвет ядрами. Подэндотелиальный слой более развит в круп­ных по диаметру артериях и состоит из клеток звездчатой или веретенообразной формы, тонких эластических волокон и аморфного вещества, содержащего гликозаминогликаны. На границе со средней оболочкой лежит внутренняя эластическая мембрана, хорошо заметная на препаратах в виде блестящей, окрашенной эозином в светло-розовый цвет волнистой полоски. Эта мембрана пронизана многочисленными отверстиями, имею­щими значение для транспорта веществ.

Средняя оболочка построена преимущественно из гладкой мышечной ткани, пучки клеток которой идут по спирали, однако при изменении положения артериальной стенки (растяжении) расположение мышечных клеток может изменяться. Сокращение мышечной ткани средней оболочки имеет значение в регулировании притока крови к органам и тканям в соответствии с их потребностями и поддержании кровяного давления. Между пучками клеток мышечной ткани расположена сеть эластических волокон, которые вместе с эластическими волокнами подэндотелиального слоя и наружной оболочки формируют единый эластический каркас, придающий стенке упругость при ее сдавливании. На границе с наружной оболочкой в крупных артериях мышечного типа имеется наружная эластическая мем­брана, состоящая из плотного сплетения продольно ориентированных эластических волокон. В более мелких артериях эта мембрана не выражена.

Наружная оболочка состоит из соединительной ткани, в которой коллагеновые волокна и сети эластических волокон вытянуты в продольном направлении. Между волокнами располагаются клетки, преимущественно фиброциты. В наружной оболочке находятся нервные волокна и мелкие кровеносные сосуды, питающие наружные слои стенки артерии.

Рис. 5. Схема строения стенки артерии (А) и вены (Б) мышечного типа:

1 — внутренняя оболочка; 2 — средняя оболочка; 3 — наружная оболочка; а — эндотелий; б — внутренняя эластическая мембрана; в — ядра клеток гладкой мышечной ткани в средней оболочке; г — ядра клеток соединительной ткани адвентиции; д — сосуды сосудов.

Артерии мышечно-эластического типа по строению стенки занимают промежуточное положение между артериями эластического и мышечного типа. В средней оболочке в равном количестве развиты спирально ориентированная гладкая мышечная ткань, эластические пластины и сеть эластических волокон.

Сосуды микроциркуляторного русла. На месте перехода артериального русла в венозное в органах и тканях сформирована густая сеть мелких прекапиллярных, капиллярных и посткапиллярных сосудов. Этот комплекс мел­ких сосудов, обеспечивающий кровенаполнение органов, транссосудистый обмен и тканевый гомеостаз, объединяют термином микроциркуляторное русло. В его состав входят различные артериолы, капилляры, венулы и артериоло-венулярные анастомозы (рис. 6).

Рис.6. Схема сосудов микроциркуляторного русла:

1 — артериола; 2 — венула; 3 — капиллярная сеть; 4 — артериоло-венулярный анастомоз

Артериолы. По мере уменьшения диаметра в артериях мы­шечного типа истончаются все оболочки и они переходят в артериолы — сосуды диаметром менее 100 мкм. Внутренняя оболочка их состоит из эндотелия, расположенного на базальной мембране, и отдельных клеток подэндотелиального слоя. В некоторых артериолах может быть очень тонкая внутренняя эластическая мембрана. В средней оболочке сохраняется один ряд спирально расположенных клеток гладкой мышечной ткани. В стенке конечных артериол, от которых ответвляются капилляры, гладкомышечные клетки не образуют сплошного ряда, а расположены разрозненно. Это прекапиллярные артериолы. Однако в месте ответвления от артериолы капилляр окружен значительным количеством гладкомышечных клеток, которые образуют своеобразный прекапиллярный сфинктер. Вследствие изменения тонуса таких сфинктеров регулируется кровоток в ка­пиллярах соответствующего участка ткани или органа. Между мышечными клетками имеются эластические волокна. Наружная оболочка содержит отдельные адвентициальные клетки и коллагеновые волокна.

Капилляры — важнейшие элементы микроциркуляторного русла, в которых осуществляется обмен газами и различными веществами между кровью и окружающими тканями. В большинстве органов между артериолами и венулами образуются ветвящиеся капиллярные сети, расположенные в рыхлой соединительной ткани. Плотность капиллярной сети в разных органах может быть различной. Чем интенсивнее обмен веществ в органе, тем гуще сеть его капилляров. Наиболее развита сеть капилляров в сером веществе органов нервной системы, в органах внутрен­ней секреции, миокарде сердца, вокруг легочных альвеол. В ске­летных мышцах, сухожилиях, нервных стволах капиллярные сети ориентированы продольно.

Капиллярная сеть постоянно находится в состоянии пере­стройки. В органах и тканях значительное количество капилляров не функционирует. В их сильно уменьшенной полости циркулирует только плазма крови (плазменные капилляры). Количество открытых капилляров увеличивается при интенсифи­кации работы органа.

Капиллярные сети встречаются и между одноименными сосудами, например венозные капиллярные сети в дольках печени, аденогипофизе, артериальные — в почечных клубочках. Кроме образования разветвленных сетей, капилляры могут иметь форму капиллярной петли (в сосочковом слое дермы) или формировать клубочки (сосудистые клубочки почек).

Капилляры — наиболее узкие сосудистые трубочки. Их калибр в среднем соответствует диаметру эритроцита (7—8 мкм), однако в зависимости от функционального состояния и органной специализации диаметр капилляров может быть различным Узкие капилляры (диаметром 4 – 5 мкм) в миокарде. Особые синусоидные капилляры с широким просветом (30 мкм и более) в дольках печени, селезенке, красном костном мозге, органах внутренней секреции.

Стенка кровеносных капилляров состоит из нескольких струк­турных элементов. Внутреннюю выстилку формирует слой эндотелиальных клеток, расположенных на базальной мембране, в последней содержатся клетки — перициты. Вокруг базальной мембраны располагаются адвентициальные клетки и ретикулярные волокна (рис. 7).

Рис.7. Схема ультраструктурной организации стенки кровеносного капил­ляра с непрерывной эндотелиальной выстилкой:

1 — эндотелиоцит: 2 — базальная мембрана; 3 — перицит; 4 — пиноцитозные микропузырьки; 5 — зона контакта между эндотелиальными клетками (рис. Козлова).

Плоские эндотелиальные клетки вытянуты по длине капилляра и имеют очень тонкие (менее 0,1 мкм) периферические безъядерные участки. Поэтому при световой микроскопии поперечного среза сосуда различима только область расположения ядра толщиной 3—5 мкм. Ядра эндотелиоцитов чаще овальной формы, содержат конденсированный хроматин, сосредоточенный около ядерной оболочки, которая, как правило, имеет неровные контуры. В цитоплазме основная масса органелл расположена в околоядерной области. Внутренняя поверхность эндотелиальных клеток неровная, плазмолемма образует различные по форме а высоте микроворсинки, выступы и клапанообразные структуры. Последние особенно характерны для венозного отдела капилляров. Вдоль внутренней и наружной поверхностей эндотелиоцитов располагаются многочисленные пиноцитозные пузырьки, свидетельствующие об интенсивном поглощении и переносе веществ через цитоплазму этих клеток. Эндотелиальные клетки благодаря способности быстро набухать и затем, отдавая жидкость, уменьшаться по высоте могут изменять величину просвета капилляра, что, в свою очередь, влияет на прохождение через него форменных элементов крови. Кроме того, при электронной микроскопии в цитоплазме выявлены микрофиламенты, обусловливающие сократительные свойства эндотелиоцитов.

Базальная мембрана, расположенная под эндотелием, выявляется при электронной микроскопии и представляет пла­стинку толщиной 30—35 нм, состоящую из сети тонких фибрилл, содержащих коллаген IV типа и аморфного компонента. В последнем наряду с белками содержится гиалуроновая кислота, полимеризованное или деполимеризованное состояние которой обусловливает избирательную проницаемость капилляров. Базальная мембрана обеспечивает также эластичность и прочность капилляров. В расщеплениях базальной мембраны встречаются особые отросчатые клетки — перициты. Они своими отростками охватывают капилляр и, проникая через базальную мембрану, формируют контакты с эндотелиоцитами.

В соответствии с особенностями строения эндотелиальной выстилки и базальной мембраны различают три типа капилляров. Большинство капилляров в органах и тканях принадлежит к первому типу (капилляры общего типа). Они характеризуются наличием непрерывных эндотелиальной выстилки и базальной мембраны. В этом сплошном слое плазмолеммы соседних эндотелиальных клеток максимально сближены и образуют соединения по типу плотного контакта, который непроницаем для макромолекул. Встречаются и другие виды контактов, когда края соседних клеток налегают друг на друга наподобие черепицы или соединяются зубчатыми поверхностями. По длине капилляров выделяют более узкую (5 - 7 мкм) проксимальную (артериолярную) и более широкую (8 - 10 мкм) дистальную (венулярную) части. В полости проксимальной части гидростатическое давление больше коллоидно-осмотического, создаваемого находящимися в крови белками. В результате жидкость фильтруется за стенку. В дистальной части гидростатическое давление становится меньше коллоидно-осмотического, что обусловливает переход во­ды и растворенных в ней веществ из окружающей тканевой жид­кости в кровь. Однако выходной поток жидкости больше входного, и избыточная жидкость в качестве составной части тканевой жидкости соединительной ткани поступает в лимфатическую систему.

В некоторых органах, в которых интенсивно происходят процессы всасывания и выделения жидкости, а также быстрый транспорт в кровь макромолекулярных веществ, эндотелий капилляров имеет округлые субмикроскопические отверстия диаметром 60— 80 нм или округлые участки, затянутые тонкой диафрагмой (почки, органы внутренней секреции). Это капилляры с фенестрами (лат. fenestrae — окна).

Капилляры третьего типа — синусоидные, характеризуются большим диаметром своего просвета, наличием между эндотелиальными клетками широких щелей и прерывистой базальной мембраной. Капилляры этого типа обнаружены в селезенке, красном костном мозге. Через их стенки проникают не только макромолекулы, но и клетки крови.

Венулы — отводящий отдел микропиркуляторного русла и начальное звено венозного отдела сосудистой системы. В них со­бирается кровь из капиллярного русла. Диаметр их просвета бо­лее широкий, чем в капиллярах (15—50 мкм). В стенке венул, так же как и у капилляров, имеется слой эндотелиальных кле­ток, расположенных на базальной мембране, а также более выраженная наружная соединительнотканная оболочка. В стенках венул, переходящих в мелкие вены, находятся отдельные гладкие мышечные клетки. В посткапиллярных венулах тимуса, лимфатических узлов элдотелиальная выстилка представлена высокими эндотелиальными клетками, способствующими избирательной миграции лимфоцитов при их рециркуляции. В венулах вследствие тонкости их стенки, медленного кровотока я низкого кровяного давления может депонироваться значительное количество крови.

Артериоло-венулярные анастомозы. Во всех органах обнаружены трубочки, по которым кровь из артериол может направляться непосредственно в венулы, минуя капиллярную сеть. Особенно много анастомозов в дерме кожи, в ушной раковине, гребне птиц, где играют определенную роль в терморегуляции.

По строению истинные артериоло-венулярные анастомозы (шунты) характеризуются наличием в стенке значительного количества продольно ориентированных пучков из гладких мышечных клеток, расположенных или в подэндотелиальном слое интимы (рис. 8), или во внутренней зоне средней оболочки. В некоторых анастомозах эти клетки приобретают эпителиоподобный вид. Продольно расположенные мышечные клетки находятся и в наружной оболочке. Встречаются не только простые анастомозы в виде единичных трубочек, но и сложные, состоящие из нескольких ветвей, отходящих от одной артериолы и окруженных общей соединительнотканной капсулой.

Рис.8. Артериоло-венулярный анастомоз:

1 — эндотелий; 2 — продольно расположенные эпителиоидно-мышечные клетки; 3 — циркулярно расположенные мышечные клетки средней оболочки; 4 — наружная оболочка.

При помощи сократительных механизмов анастомозы могут уменьшить или полностью закрыть свой просвет, в результате чего течение крови через них прекращается и кровь поступает в капиллярную сеть. Благодаря этому органы получают кровь в зависимости от потребности, связанной с их работой. Кроме того, высокое давление артериальной крови через анастомозы передается в венозное русло, способствуя этим лучшему пере движению крови в венах. Значительна роль анастомозов в обогащении венозной крови кислородом, а также в регуляции кровообращения при развитии патологических процессов в органах.

Вены — кровеносные сосуды, по которым кровь из органов и тканей течет к сердцу, в правое предсердие. Исключение составляют легочные вены, направляющие кровь, богатую кислородом, из легких в левое предсердие.

Стенка вен, так же как и стенка артерий, состоит из трех оболочек: внутренней, средней и наружной. Однако конкретное гистологическое строение этих оболочек в различных венах очень разнообразно, что связано с различием их функционирования и местными (в соответствии с локализацией вены) условиями кровообращения. Большинство вен одинакового диаметра с одноименными артериями имеет более тонкую стенку и более широкий просвет.

В соответствии с гемодинамическими условиями — низким кровяным давлением (15—20 мм рт. ст.) и незначительной скоростью кровотока (около 10 мм/с) — в стенке вен сравнительно слабо развиты эластические элементы и меньшее количество мышечной ткани в средней оболочке. Эти признаки обусловливают возможность изменения конфигурации вен: при малом кровена­полнении стенки вен становятся спавшимися, а при затруднении оттока крови (например, вследствие закупорки) легко происхо­дят растяжение стенки и расширение вен.

Существенное значение в гемодинамике венозных сосудов имеют клапаны, расположенные таким образом, что, пропуская кровь по направлению к сердцу, они преграждают путь ее обратному течению. Число клапанов больше в тех венах, в которых кровь течет в направлении, обратном действию силы тяжести (например, в венах конечностей).

По степени развития в стенке мышечных элементов различают вены безмышечного и мышечного типов.

Вены безмышечного типа. К характерным венам данного типа относят вены костей, центральные вены печеночных долек и трабекулярные вены селезенки. Стенка этих вен состоит только из слоя эндотелиальных клеток, расположенных на базальной мембране, и наружного тонкого слоя волокнистой соединительной ткани С участием последней стенка плотно срастается с окружающими тканями, вследствие чего эти вены пассивны в продвижении по ним крови и не спадаются. Безмышечные вены мозговых оболочек и сетчатки глаза, наполняясь кровью, способ­ны легко растягиваться, но в то же время кровь под действием собственной силы тяжести легко оттекает в более крупные венозные стволы.

Вены мышечного типа. Стенка этих вен, подобно стенке артерий, состоит из трех оболочек, однако границы между ними ме­нее отчетливы. Толщина мышечной оболочки в стенке вен разной локализации неодинаковая, что зависит от того, движется кровь в них под действием силы тяжести или против нее. На основании этого вены мышечного типа подразделяют на вены со слабым, средним и сильным развитием мышечных элементов. К венам первой разновидности относят горизонтально расположенные вены верхней части туловища организма и вены пищеваритель­ного тракта. Стенки таких вен тонкие, в их средней оболочке гладкая мышечная ткань не образует сплошного слоя, а расположена пучками, между которыми имеются прослойки рыхлой соединительной ткани.

К венам с сильным развитием мышечных элементов относят крупные вены конечностей животных, по которым кровь течет вверх, против силы тяжести (бедренная, плечевая и др.). Для них характерны продольно расположенные небольшие пучки клеток гладкой мышечной ткани в подэндотелиальном слое интимы и хорошо развитые пучки этой ткани в наружной оболочке. Сокращение гладкой мышечной ткани наружной и внутренней оболо­чек приводит к образованию поперечных складок стенки вен, что препятствует обратному кровотоку.

В средней оболочке содержатся циркулярно расположенные пучки клеток гладкой мышечной ткани, сокращения которых способствуют продвижению крови к сердцу. В венах конечностей имеются клапаны, представляющие собой тонкие складки, обра­зованные эндотелием и подэндотелиальным слоем. Основу клапана составляет волокнистая соединительная ткань, которая в основании створок клапана может содержать некоторое количе­ство клеток гладкой мышечной ткани. Клапаны также препятствуют обратному току венозной крови. Для движения крови в венах существенное значение имеют присасывающее действие грудной клетки во время вдоха и сокращение скелетной мышечной ткани, окружающей венозные сосуды.

Васкуляризация и иннервация кровеносных сосудов. Питание стенки крупных и средних артериальных сосудов осуществляется как извне — через сосуды сосудов (vasa vasorum), так и изнутри — за счет крови, протекающей внутри сосуда. Сосуды сосудов — это ветви тонких околососудистых артерий, проходящих в окружающей соединительной ткани. В наружной оболочке стенки сосуда ветвятся артериальные веточки, в среднюю проникают капилляры, кровь из которых собирается в венозные сосуды сосудов. Интима и внутренняя зона средней оболочки артерий не имеют капилляров и питаются со стороны просвета сосудов. В связи со значительно меньшей силой пульсовой волны, меньшей толщиной средней оболочки, отсутствием внутренней эластической мембраны механизм питания вены со стороны полости не имеет особого значения. В венах сосуды со­судов снабжают артериальной кровью все три оболочки.

Сужение и расширение кровеносных сосудов, поддержание сосудистого тонуса происходят главным образом под влиянием импульсов, поступающих из сосудодвигательного центра. Импульсы от центра передаются к клеткам боковых рогов спинного мозга, откуда к сосудам поступают по симпатическим нервным волокнам. Конечные разветвления симпатических волокон, в составе которых находятся аксоны нервных клеток симпатических ганглиев, образуют на клетках гладкой мышечной ткани двигательные нервные окончания. Эфферентная симпатическая иннерва­ция сосудистой стенки обусловливает основной сосудосуживающий эффект. Вопрос о природе вазодилататоров окончательно не решен.

Установлено, что сосудорасширяющими в отношении сосудов головы являются парасимпатические нервные волокна.

Во всех трех оболочках стенки сосудов концевые разветвле­ния дендритов нервных клеток, преимущественно спинальных ганглиев, образуют многочисленные чувствительные нервные окончания. В адвентиции и околососудистой рыхлой соединитель­ной ткани среди многообразных по форме свободных окончаний встречаются и инкапсулированные тельца. Особенно важное физиологическое значение имеют специализированные интерорецепторы, воспринимающие изменения давления крови и ее химического состава, сосредоточенные в стенке дуги аорты и в области разветвления сонной артерии на внутреннюю и наружную — аортальная и каротидная рефлексогенные зоны. Установлено, что помимо этих зон существует достаточное количество других сосудистых территорий, чувствительных к изменению давления и химического состава крови (баро- и хеморецепторы). От рецепторов всех специализированных территорий импульсы по центростремительным нервам достигают сосудодвигательного центра продолговатого мозга, вызывая соответствующую компенсаторную нервнорефлекторную реакцию.

studfiles.net


Смотрите также